Abstract:
A device for measuring activity of cultured cells includes a position detecting unit specifying a position of a cell to be measured, a microchamber controlling unit disposing in the culture container a microchamber which surrounds the cell and forms a measurement space, the measurement space being minute with respect to a volume of the culture container, and a measuring unit measuring environmental factors contained in the measurement space.
Abstract:
A method of analyzing an exosome is provided for detecting abnormality in a cell, including: (a) a step of preparing an exosome from a sample; (b) a step of bringing the exosome prepared in the step (a) into contact with a first antibody to a protein which exists on the surface of the exosome as an antigen and forming a first antibody-exosome complex; and (c) a step of measuring a zeta potential of the first antibody-exosome complex.
Abstract:
A method for detecting a target nucleic acid, comprising: (a) contacting a nucleic acid sample comprising a target nucleic acid, comprising a first portion and a second portion, with: (i) a detection probe, wherein the detection probe is labeled with a labeling substance and comprises a nucleic acid sequence that forms a stem-loop structure and having a 5′ protruding end or a 3′ protruding end that is capable of hybridizing to the second portion, and (ii) a capture probe comprising a nucleic acid sequence capable of hybridizing to the first portion, wherein the capture probe is immobilized to a substrate, under conditions to form a target nucleic acid-detection probe-capture probe complex by hybridizing the second portion to the detection probe and hybridizing the first portion to the capture probe; (b) ligating a first end of the detection probe with an end of the target nucleic acid and ligating a second end of the detection probe with an end of the capture probe; and (c) detecting the labeling substance of the nucleic acid-detection probe-capture probe complex formed on the substrate.
Abstract:
The present invention relates to a protein or peptide printing method, comprising (a) a step for preparing nucleic acids and a cell-free protein synthesis system in an engraved plate composed of microscopic grooves having a specific opening shape, (b) a step for superimposing a substrate on the engraved plate so as to contact a protein or peptide to be synthesized in the microscopic grooves, and (c) a step for synthesizing the protein or peptide from the nucleic acids using the cell-free protein synthesis system in the microscopic grooves, and immobilizing the protein or peptide on the substrate along the specific opening shapes of the microscopic grooves.
Abstract:
The present invention relates to a nucleic acid linker for producing a complex of mRNA, and a protein or a peptide which is encoded by the mRNA, the linker comprising: a spacer portion at the 5′-terminal; a polynucleotide portion hybridizable with at least a part of a sequence of the mRNA; and an arm portion which has a connection portion for the protein or the peptide at the 3′-terminal, in which the spacer portion, the polynucleotide portion, and the arm portion form a single strand, and in which the polynucleotide portion contains a photoreactive base derivative.
Abstract:
A protein-immobilizing solid phase is a protein-immobilizing solid phase comprising an mRNA-nucleic acid linker-protein complex, obtained by linking the mRNA and the protein encoded by that mRNA through the nucleic acid linker, immobilized on the solid phase, wherein the nucleic acid linker has a photocleavage site and a solid phase binding site.
Abstract:
A method for detecting a target nucleic acid, comprising: (a) contacting a nucleic acid sample comprising a target nucleic acid, comprising a first portion and a second portion, with: (i) a detection probe, wherein the detection probe is labeled with a labeling substance and comprises a nucleic acid sequence that forms a stem-loop structure and having a 5′ protruding end or a 3′ protruding end that is capable of hybridizing to the second portion, and (ii) a capture probe comprising a nucleic acid sequence capable of hybridizing to the first portion, wherein the capture probe is immobilized to a substrate, under conditions to form a target nucleic acid-detection probe-capture probe complex by hybridizing the second portion to the detection probe and hybridizing the first portion to the capture probe; (b) ligating a first end of the detection probe with an end of the target nucleic acid and ligating a second end of the detection probe with an end of the capture probe; and (c) detecting the labeling substance of the nucleic acid-detection probe-capture probe complex formed on the substrate.
Abstract:
A method of analyzing an exosome is provided for detecting abnormality in a cell, including: (a) a step of preparing an exosome from a sample; (b) a step of bringing the exosome prepared in the step (a) into contact with a first antibody to a protein which exists on the surface of the exosome as an antigen and forming a first antibody-exosome complex; and (c) a step of measuring a zeta potential of the first antibody-exosome complex.
Abstract:
The present invention relates to a nucleic acid linker for producing a complex of mRNA, and a protein or a peptide which is encoded by the mRNA, the linker comprising: a spacer portion at the 5′-terminal; a polynucleotide portion hybridizable with at least a part of a sequence of the mRNA; and an arm portion which has a connection portion for the protein or the peptide at the 3′-terminal, in which the spacer portion, the polynucleotide portion, and the arm portion form a single strand, and in which the polynucleotide portion contains a photoreactive base derivative.
Abstract:
A fluidic device includes: a circulation flow path; and a capture part arranged on the circulation flow path and configured to capture a sample substance in a solution and/or a detection part arranged on the circulation flow path and configured to detect a sample substance in a solution. A method of capturing a sample substance that is bound to a carrier particle, using a fluidic device which includes a circulation flow path and a capture part arranged on the circulation flow path and configured to capture the carrier particle and in which the circulation flow path has two or more circulation flow path valves, includes: an introduction step of, in a state where the circulation flow path valve is closed, introducing a solution that includes a sample substance to at least one of partitions partitioned by the circulation flow path valve and introducing a solution that includes a carrier particle which is bound to the sample substance to at least another of the partitions; a mix step of opening all of the circulation flow path valves and circulating and mixing a solution in the circulation flow path; and a capture step of capturing the carrier particle by the capture part.