Abstract:
The present invention provides a fluidic device, an exosome analysis method, a biomolecule analysis method, and a biomolecule detection method, which can analyze even the content of an exosome in a series of flows by introducing a sample into the device. A fluidic device of the present invention is a fluidic device which detects a biomolecule contained in an exosome in a sample, and includes: an exosome purification unit which has a layer modified with a compound having a hydrophobic chain and a hydrophilic chain; a biomolecule purification unit; a biomolecule detection unit; a first flow path which connects the exosome purification unit to the biomolecule purification unit; and a second flow path which connects the biomolecule purification unit to the biomolecule detection unit.
Abstract:
A method for detecting a target nucleic acid, comprising: (a) contacting a nucleic acid sample comprising a target nucleic acid, comprising a first portion and a second portion, with: (i) a detection probe, wherein the detection probe is labeled with a labeling substance and comprises a nucleic acid sequence that forms a stem-loop structure and having a 5′ protruding end or a 3′ protruding end that is capable of hybridizing to the second portion, and (ii) a capture probe comprising a nucleic acid sequence capable of hybridizing to the first portion, wherein the capture probe is immobilized to a substrate, under conditions to form a target nucleic acid-detection probe-capture probe complex by hybridizing the second portion to the detection probe and hybridizing the first portion to the capture probe; (b) ligating a first end of the detection probe with an end of the target nucleic acid and ligating a second end of the detection probe with an end of the capture probe; and (c) detecting the labeling substance of the nucleic acid-detection probe-capture probe complex formed on the substrate.
Abstract:
A method for detecting a target nucleic acid, comprising: (a) contacting a nucleic acid sample comprising a target nucleic acid, comprising a first portion and a second portion, with: (i) a detection probe, wherein the detection probe is labeled with a labeling substance and comprises a nucleic acid sequence that forms a stem-loop structure and having a 5′ protruding end or a 3′ protruding end that is capable of hybridizing to the second portion, and (ii) a capture probe comprising a nucleic acid sequence capable of hybridizing to the first portion, wherein the capture probe is immobilized to a substrate, under conditions to form a target nucleic acid-detection probe-capture probe complex by hybridizing the second portion to the detection probe and hybridizing the first portion to the capture probe; (b) ligating a first end of the detection probe with an end of the target nucleic acid and ligating a second end of the detection probe with an end of the capture probe; and (c) detecting the labeling substance of the nucleic acid-detection probe-capture probe complex formed on the substrate.
Abstract:
A method for detecting a target nucleic acid, comprising: (a) contacting a nucleic acid sample comprising a target nucleic acid, comprising a first portion and a second portion, with: (i) a detection probe, wherein the detection probe is labeled with a labeling substance and comprises a nucleic acid sequence that forms a stem-loop structure and having a 5′ protruding end or a 3′ protruding end that is capable of hybridizing to the second portion, and (ii) a capture probe comprising a nucleic acid sequence capable of hybridizing to the first portion, wherein the capture probe is immobilized to a substrate, under conditions to form a target nucleic acid-detection probe-capture probe complex by hybridizing the second portion to the detection probe and hybridizing the first portion to the capture probe; (b) ligating a first end of the detection probe with an end of the target nucleic acid and ligating a second end of the detection probe with an end of the capture probe; and (c) detecting the labeling substance of the nucleic acid-detection probe-capture probe complex formed on the substrate.