摘要:
A memory circuit includes a latch having a first node and a second node to store data such that a logic level of the first node is an inverse of a logic level of the second node, a MIS transistor having a gate node, a first source/drain node, and a second source/drain node, the first source/drain node coupled to the first node of the latch, and a control circuit configured to control the gate node and second source/drain node of the MIS transistor to make an upward lingering change in a threshold voltage of the MIS transistor in a first operation in response to data stored in the latch and to make a downward lingering change in the threshold voltage in a second operation in response to data stored in the latch.
摘要:
A memory circuit includes a latch having a first node and a second node to store data such that a logic level of the first node is an inverse of a logic level of the second node, a MIS transistor having a gate node, a first source/drain node, and a second source/drain node, the first source/drain node coupled to the first node of the latch, and a control circuit configured to control the gate node and second source/drain node of the MIS transistor to make an upward lingering change in a threshold voltage of the MIS transistor in a first operation in response to data stored in the latch and to make a downward lingering change in the threshold voltage in a second operation in response to data stored in the latch.
摘要:
A memory circuit includes a latch having a first node and a second node to store data such that a logic level of the first node is an inverse of a logic level of the second node, a MIS transistor having a gate node, a first source/drain node, and a second source/drain node, the first source/drain node coupled to the first node of the latch, and a control circuit configured to control the gate node and second source/drain node of the MIS transistor in a first operation such that a lingering change is created in transistor characteristics of the MIS transistor in response to the data stored in the latch, wherein the MIS transistor includes a highly-doped substrate layer, a lightly-doped substrate layer disposed on the highly-doped substrate layer, diffusion regions formed in the lightly-doped substrate layer, a gate electrode, sidewalls, and an insulating film.
摘要:
A structure and manufacturing process of a low dielectric constant interlayer insulating film used between wiring layers and semiconductor devices using such film are disclosed. The insulating film which can withstand in an actual process comprises an amorphous carbon fluoride film. A diamond like carbon film and a silicon excess layer are disposed on both sides of the amorphous carbon fluoride film to be inserted between the wiring layers, whereby adhesion to wiring and another insulating film contacting it is significantly enhanced. In addition, a silicon based insulating film is disposed and flattened on a multilayer film containing an amorphous carbon fluoride film buried with a wiring layer, and is used as a hard mask for anisotropically etching the diamond like carbon film and the amorphous carbon fluoride film with oxygen plasma to form a via hole.
摘要:
A nonvolatile semiconductor memory device includes an MIS transistor having nodes, a control circuit configured to apply a first set of potentials to the nodes to cause an irreversible change in transistor characteristics, to apply a second set of potentials to the nodes to cause a first current to flow through the MIS transistor in a first direction, and to apply the second set of potentials to the nodes to cause a second current to flow through the MIS transistor in a second direction opposite the first direction, and a sense circuit configured to produce a signal responsive to a difference between the first current and the second current.
摘要:
A silicon oxide removal apparatus for removing silicon oxide contained in an inert gas discharged from a silicon single crystal manufacturing apparatus, including at least: a contact means for bringing the inert gas discharged from the silicon single crystal manufacturing apparatus into contact with a strongly alkaline solution; and a neutralizing means for neutralizing an alkaline material contained in the inert gas brought into contact with the strongly alkaline solution. As a result, there is provided a silicon oxide removal apparatus and a facility for recycling an inert gas for use in a silicon single crystal manufacturing apparatus that can more effectively remove the silicon oxide contained in the inert gas discharged from the silicon single crystal manufacturing apparatus at low cost and enable recycle of the inert gas in which the silicon oxide has been effectively removed.
摘要:
A memory circuit includes a latch having a first node and a second node, a MIS transistor having a gate node, a first source/drain node coupled to the first node of the latch, and a second source/drain node, and a control circuit configured to control the gate node and second source/drain node to make a lingering change in a threshold voltage of the MIS transistor in a first operation and to cause the latch in a second operation to store data responsive to whether a lingering change in the threshold voltage is present, wherein the MIS transistor includes diffusion regions, a gate electrode, and sidewalls, wherein a metallurgical junction of each of the diffusion regions is positioned under the gate electrode, and a lateral boundary of a depletion layer in the diffusion region serving as a drain is positioned under a corresponding one of the sidewalls in the first operation.
摘要:
A memory circuit includes a latch having a first node and a second node to store data such that a logic level of the first node is an inverse of a logic level of the second node, a MIS transistor having a gate node, a first source/drain node, and a second source/drain node, the first source/drain node coupled to the first node of the latch, and a control circuit configured to control the gate node and second source/drain node of the MIS transistor in a first operation such that a lingering change is created in transistor characteristics of the MIS transistor in response to the data stored in the latch, wherein the MIS transistor includes a highly-doped substrate layer, a lightly-doped substrate layer disposed on the highly-doped substrate layer, diffusion regions formed in the lightly-doped substrate layer, a gate electrode, sidewalls, and an insulating film.
摘要:
A process of fabricating an asymmetrical LDD-MOSFET of the type in which a diffused low-doped layer is provided only on the drain side is disclosed. In a MOSFET-formed region, after forming a gate electrode, using a photoresist film covering one sidewall of the gate electrode and the vicinity thereof, ion implantation is performed to form a diffused lightly-doped layer and thereover a silicon dioxide film is selectively grown by the liquid phase deposition technique. In detail, immersion of a concerned wafer in a silicon dioxide-saturated hydrofluosilicic acid aqueous solution while adding boric acid to it brings about the separation and deposition of silicon dioxide film. No deposition onto the surface of the photoresist film takes place. In usual way proceeds formation of a spacer by anisotropic etching, followed by heavily doped source and drain regions. A reduced source parasitic resistance LDD-MOSFET can be easily fabricated.
摘要:
A memory circuit includes a latch having a first node and a second node, a plate line, a word selecting line, a first MIS transistor having source/drain nodes thereof coupled to the first node and the plate line, respectively, and a gate node thereof coupled to the word selecting line, a second MIS transistor having source/drain nodes thereof coupled to the second node and the plate line, respectively, and a gate node thereof coupled to the word selecting line, and a driver configured to set the plate line to a first potential causing a current to flow in a first direction through the first MIS transistor in a first operation mode and to a second potential causing a current to flow in a second direction through the first MIS transistor in a second operation mode, the first operation mode causing a lingering change in characteristics of the first MIS transistor.