Abstract:
A beam transmitting device improves performance of a communication channel. The beam transmitting device includes a controller configured to transmit a null data packet (NDP) and receive channel information; and a smoothing circuit configured to smooth a plurality of beamforming vectors in the channel information. The smoothing circuit includes a weight calculator configured to calculate a common phase factor using two adjacent beamforming vectors among the plurality of beamforming vectors, and a moving average filter configured to perform the smoothing using the common phase factor.
Abstract:
A semiconductor device includes an active fin on a substrate, a device isolation film covering a lower portion of the active fin, a gate structure covering the active fin and the device isolation film, and a gate spacer on a side wall of the gate structure, wherein a side wall of the gate structure disposed on the device isolation film is inclined at a uniform inclination from a point higher than a half of a height of the gate structure to a bottom of the gate structure, and an inner side wall of the gate spacer on the device isolation film is inclined at a uniform inclination from a point higher than a half of a height of the gate spacer to a bottom of the gate spacer while forming an acute angle with a bottom surface of the gate spacer.
Abstract:
A method for wireless communications includes: receiving a sounding packet from an access point; determining a rank of a channel matrix corresponding to a communications channel; and when the rank of the channel matrix is a full rank: selecting at least one of a plurality of pieces of codebook information previously stored in a memory, as beamforming information, transmitting the beamforming information to the access point, and applying channel smoothing to a communications channel provided by the access point.
Abstract:
A method performed in an electronic device is provided. The method includes: collecting operation information on at least one of a data communication operation, a paging operation, and a voice communication operation of a first antenna, a second antenna, or a third antenna; determining at least one antenna to be used of the first antenna, the second antenna, and third antenna based on at least part of the collected operation information; and performing communication by using the determined antenna.
Abstract:
A semiconductor device includes a substrate including a first region, and a second region, a first gate structure and a second gate structure on the substrate of the first region, a third gate structure and a fourth gate structure on the substrate of the second region, a first interlayer insulating film on the substrate of the first region and including a first lower interlayer insulating film and a first upper interlayer insulating film, a second interlayer insulating film on the substrate of the second region and including a second lower interlayer insulating film and a second upper interlayer insulating film, a first contact between the first gate structure and the second gate structure and within the first interlayer insulating film, and a second contact formed between the third gate structure and the fourth gate structure and within the second interlayer insulating film.
Abstract:
A semiconductor device includes a substrate having first fin and a second fin spaced apart and extending lengthwise in parallel. A fin remnant is disposed between the first fin and the second fin, extends lengthwise in parallel with the first and second fins, and has a height lower than a height of each of the first fin and the second fin. A first field insulation layer is disposed between a sidewall of the first fin and a first sidewall of the fin remnant and a second field insulating layer is disposed on a sidewall of the second fin. A blocking liner conforms to a sidewall and a bottom surface of a trench bounded by a second sidewall of the fin remnant and a sidewall of the second field insulating layer. A trench insulation layer is disposed on the blocking liner in the trench.
Abstract:
A semiconductor device includes a substrate including a first region, and a second region, a first gate structure and a second gate structure on the substrate of the first region, a third gate structure and a fourth gate structure on the substrate of the second region, a first interlayer insulating film on the substrate of the first region and including a first lower interlayer insulating film and a first upper interlayer insulating film, a second interlayer insulating film on the substrate of the second region and including a second lower interlayer insulating film and a second upper interlayer insulating film, a first contact between the first gate structure and the second gate structure and within the first interlayer insulating film, and a second contact formed between the third gate structure and the fourth gate structure and within the second interlayer insulating film.
Abstract:
A method of controlling a communication unit of an electronic device is provided. The method includes: obtaining magnetic field information via a magnetic sensor; comparing the obtained magnetic field information with reference magnetic field information; and switching the communication unit in an inactive state to an active state based on a result of the comparing, wherein the communication unit is capable of communicating with an external device in the active state.
Abstract:
A modified microorganism for producing a high yield of 1,4-butanediol, and a method of producing 1,4-butanediol using the modified microorganism, wherein the modified microorganism is altered so as to delete or disrupt expression of at least one of transcription regulatory factor NCg12886, GCN5-related N-acetyltransferase NCg12090, hypothetical protein NCg10224 or sugar phosphate isomerase/epimerase NCg12956.
Abstract:
An electronic device includes a feedback oscillator configured to output a first oscillation signal and a second oscillation signal, the second oscillation signal having a defined phase difference from the first oscillation signal, the feedback oscillator including a phase shifter configured to receive the first oscillation signal and output the second oscillation signal, an up-conversion mixer configured to output a first loopback signal obtained by mixing the first oscillation signal with a reference tone signal, and output a second loopback signal obtained by mixing the second oscillation signal with the reference tone signal, and a receiver configured to generate a first reference IQ signal from the first loopback signal, generate a second reference IQ signal from the second loopback signal, and compare an actual phase difference between the first reference IQ signal and the second reference IQ signal with the defined phase difference.