Abstract:
A semiconductor device includes a plurality of semiconductor die and a plurality of conductive vias formed in the semiconductor die. An insulating layer is formed over the semiconductor die while leaving the conductive vias exposed. An interconnect structure is formed over the insulating layer and conductive vias. The insulating layer is formed using electrografting or oxidation. An under bump metallization is formed over the conductive vias. A portion of the semiconductor die is removed to expose the conductive vias. The interconnect structure is formed over two or more of the conductive vias. A portion of the semiconductor die is removed to leave the conductive vias with a height greater than a height of the semiconductor die. A second insulating layer is formed over the first insulating layer. A portion of the second insulating layer is removed to expose the conductive via.
Abstract:
A semiconductor device includes a plurality of semiconductor die and a plurality of conductive vias formed in the semiconductor die. An insulating layer is formed over the semiconductor die while leaving the conductive vias exposed. An interconnect structure is formed over the insulating layer and conductive vias. The insulating layer is formed using electrografting or oxidation. An under bump metallization is formed over the conductive vias. A portion of the semiconductor die is removed to expose the conductive vias. The interconnect structure is formed over two or more of the conductive vias. A portion of the semiconductor die is removed to leave the conductive vias with a height greater than a height of the semiconductor die. A second insulating layer is formed over the first insulating layer. A portion of the second insulating layer is removed to expose the conductive via.
Abstract:
A semiconductor device has a plurality of conductive vias formed into a semiconductor wafer. An insulating lining is formed around the conductive vias and a conductive layer is formed over the insulating lining. A portion of the semiconductor wafer is removed so the conductive vias extend above a surface of the semiconductor wafer. A first insulating layer is formed over the surface of the semiconductor wafer and conductive vias. A first portion of the first insulating layer is removed and a second portion of the first insulating layer remains as guard rings around the conductive vias. A conductive layer is formed over the conductive vias. A second insulating layer is formed over the surface of the semiconductor wafer, guard rings, and conductive vias. A portion of the second insulating layer is removed to expose the conductive vias and a portion of the guard rings.
Abstract:
A semiconductor device has a plurality of conductive vias formed through the semiconductor die with a first insulating layer around the conductive vias. A recess is formed in the first insulating layer around the conductive vias by LDA. A portion of the semiconductor wafer is removed by LDA after forming the recess in the first insulating layer so that the conductive vias extend above a surface of the semiconductor wafer. The first insulating layer extends to the surface of the semiconductor wafer or above the surface of the semiconductor wafer. A second insulating layer is formed over the surface of the semiconductor wafer and conductive vias. A first portion of the second insulating layer is removed by LDA, while leaving a second portion of the second insulating layer over the surface of the semiconductor wafer around the conductive vias. An electroless plated bump is formed over the conductive vias.
Abstract:
A semiconductor device can be formed by first providing a semiconductor wafer, and forming a conductive via into the semiconductor wafer. A portion of the semiconductor wafer can be removed so that the conductive via extends above a surface of the semiconductor wafer. A first insulating layer can be formed over the surface of the semiconductor wafer and the conductive via, followed by a second insulating layer, the second insulating layer having a different material composition than the first insulating layer. Portions of the insulating layers can be removed to expose the conductive via.
Abstract:
A semiconductor device has a plurality of conductive vias formed into a semiconductor wafer. An insulating lining is formed around the conductive vias and a conductive layer is formed over the insulating lining. A portion of the semiconductor wafer is removed so the conductive vias extend above a surface of the semiconductor wafer. A first insulating layer is formed over the surface of the semiconductor wafer and conductive vias. A first portion of the first insulating layer is removed and a second portion of the first insulating layer remains as guard rings around the conductive vias. A conductive layer is formed over the conductive vias. A second insulating layer is formed over the surface of the semiconductor wafer, guard rings, and conductive vias. A portion of the second insulating layer is removed to expose the conductive vias and a portion of the guard rings.
Abstract:
A semiconductor device has a plurality of conductive vias formed through the semiconductor die with a first insulating layer around the conductive vias. A recess is formed in the first insulating layer around the conductive vias by LDA. A portion of the semiconductor wafer is removed by LDA after forming the recess in the first insulating layer so that the conductive vias extend above a surface of the semiconductor wafer. The first insulating layer extends to the surface of the semiconductor wafer or above the surface of the semiconductor wafer. A second insulating layer is formed over the surface of the semiconductor wafer and conductive vias. A first portion of the second insulating layer is removed by LDA, while leaving a second portion of the second insulating layer over the surface of the semiconductor wafer around the conductive vias. An electroless plated bump is formed over the conductive vias.
Abstract:
A semiconductor device can be formed by first providing a semiconductor wafer, and forming a conductive via into the semiconductor wafer. A portion of the semiconductor wafer can be removed so that the conductive via extends above a surface of the semiconductor wafer. A first insulating layer can be formed over the surface of the semiconductor wafer and the conductive via, followed by a second insulating layer, the second insulating layer having a different material composition than the first insulating layer. Portions of the insulating layers can be removed to expose the conductive via.