Abstract:
In a layered bonding material 10, a coefficient of linear expansion of a base material 11 is 5.5 to 15.5 ppm/K and a first surface and a second surface of the base material 11 are coated with pieces of lead-free solder 12a and 12b.
Abstract:
An electrode for an energy storage device including a Zn layer or Zn alloy layer, a Ni layer, and a Sn layer or Sn alloy layer formed by plating on a connecting terminal part of a positive electrode composed of Al so that the resistance value at the contacting point is reduced and the voltage of the energy storage device can be effectively supplied without any drop. Accordingly, this electrode can be soldered to a Cu negative electrode, which is composed of metal that is different species from Al, through a Sn layer or a Sn alloy layer so that jointing strength of the Al positive electrode and the Cu negative electrode can be enhanced. The contacting area is increased in comparison with the conventional jointing by spot-welding or conventional fastening by a bolt so that the resistance value at the contacting point is reduced.
Abstract:
Provided are a metal body that can be manufactured easily while whisker generation resulting from external stress is suppressed, a fitting connection terminal, and a method for forming the metal body. The metal body includes a barrier layer containing Ni as a main component formed on a metal substrate containing Cu as a main component, and a metal plating layer containing Sn as a main component formed directly on the barrier layer. An area ratio that is a ratio of the area of an intermetallic compound containing Sn and Cu in the metal plating layer to a cross section of the metal plating layer is 20% or less in the cross section of the metal body.
Abstract:
An electrode for an energy storage device including a Zn layer or Zn alloy layer, a Ni layer, and a Sn layer or Sn alloy layer formed by plating on a connecting terminal part of a positive electrode composed of Al so that the resistance value at the contacting point is reduced and the voltage of the energy storage device can be effectively supplied without any drop. Accordingly, this electrode can be soldered to a Cu negative electrode, which is composed of metal that is different species from Al, through a Sn layer or a Sn alloy layer so that jointing strength of the Al positive electrode and the Cu negative electrode can be enhanced. The contacting area is increased in comparison with the conventional jointing by spot-welding or conventional fastening by a bolt so that the resistance value at the contacting point is reduced.