Abstract:
A solder-ball-supplying method, a solder-ball-supplying device and a solder-bump-forming method, which are flux-less and capable of being also applied to electrodes having a fine pitch. A substrate on which a resist with openings is positioned on electrode(s), which has a diameter of 10 through 30 μm, of the substrate is prepared. Next, plural solder balls SBL each having a grain diameter of 1 through 10 μm are shaken down to the opening(s) of the resist from a hopper and filled therein. Next, by sliding and moving a squeegee on an upper surface of the resist along X-Y direction, the solder balls SBL shaken down to the resist other than the openings are scrapped and removed and the solder balls SBL in the openings and around them are pushed into the openings by the squeegee.
Abstract:
An electrode for an energy storage device including a Zn layer or Zn alloy layer, a Ni layer, and a Sn layer or Sn alloy layer formed by plating on a connecting terminal part of a positive electrode composed of Al so that the resistance value at the contacting point is reduced and the voltage of the energy storage device can be effectively supplied without any drop. Accordingly, this electrode can be soldered to a Cu negative electrode, which is composed of metal that is different species from Al, through a Sn layer or a Sn alloy layer so that jointing strength of the Al positive electrode and the Cu negative electrode can be enhanced. The contacting area is increased in comparison with the conventional jointing by spot-welding or conventional fastening by a bolt so that the resistance value at the contacting point is reduced.
Abstract:
A solder ball includes 0.1% by mass or more and 10% by mass or less of In and a remainder of Sn. The ball has a yellowness (b*) in an L*a*b* color system of 2.8 or more and 15.0 or less and a lightness (L*) of 60 or more and 100 or less. The ball further includes at least one element selected from a group of 0% by mass or more and 4% by mass or less of Ag, 0% by mass or more and 1.0% by mass or less of Cu, 0% to 3% by mass in total of Bi and/or Sb, and 0% to 0.1% by mass in total of an element selected from a group of Ni, Co, Fe, Ge, and P, excluding a solder ball including 3% by mass of Ag, 0.5% by mass of Cu, 0.2% by mass of In and a remainder of Sn.
Abstract:
A flux applying device for applying flux to a surface of solder, wherein the flux applying device includes: a dipping means that applies the flux to the surface of the solder by dipping the solder into the flux; a load applying means that applies a predetermined load to the solder, the load applying means being provided at a upstream side of the dipping means; a constant speed conveying means that conveys the solder at a predetermined speed with being under load by the load applying means; a drying means that dries the solder to which the flux is applied; a cooling means that cools the dried solder; a conveying speed measurement means that measures a conveying speed of the solder; and a control means that controls the conveying speed of the solder.
Abstract:
A flux applying device for applying flux to a surface of solder, wherein the flux applying device includes: a dipping means that applies the flux to the surface of the solder by dipping the solder into the flux; a load applying means that applies a predetermined load to the solder, the load applying means being provided at a upstream side of the dipping means; a constant speed conveying means that conveys the solder at a predetermined speed with being under load by the load applying means; a drying means that dries the solder to which the flux is applied; a cooling means that cools the dried solder; a conveying speed measurement means that measures a conveying speed of the solder; and a control means that controls the conveying speed of the solder.
Abstract:
Provided is a solder transfer sheet which is capable of increasing the amount of solder to be transferred without the occurrence of bridging. A solder transfer sheet 1A includes a base material 5, an adhesive layer 4 formed on the surface of the base material 5, a solder powder-containing adhesive layer 3 formed on the surface of the adhesive layer 4, and a solder powder layer 2 formed on the surface of the solder powder-containing adhesive layer 3. In the solder powder layer 2, particles of solder powder 20 are arranged in a one-layer sheet form. In the solder powder-containing adhesive layer 3, solder powder 30 and an adhesive component 31 are mixed so as to have such a thickness that two or more layers of the solder powder 30 are stacked.
Abstract:
In a layered bonding material 10, a coefficient of linear expansion of a base material 11 is 5.5 to 15.5 ppm/K and a first surface and a second surface of the base material 11 are coated with pieces of lead-free solder 12a and 12b.
Abstract:
A solder-ball-supplying method, a solder-ball-supplying device and a solder-bump-forming method, which are flux-less and capable of being also applied to electrodes having a fine pitch. A substrate on which a resist with openings is positioned on electrode(s), which has a diameter of 10 through 30 μm, of the substrate is prepared. Next, plural solder balls SBL each having a grain diameter of 1 through 10 μm are shaken down to the opening(s) of the resist from a hopper and filled therein. Next, by sliding and moving a squeegee on an upper surface of the resist along X-Y direction, the solder balls SBL shaken down to the resist other than the openings are scrapped and removed and the solder balls SBL in the openings and around them are pushed into the openings by the squeegee.
Abstract:
Provided herein is a solder material that includes a spherical core that provides space between a joint object and another object to be joined to the joint object and a solder coated layer that has a melting point at which a core layer of the core is not melted. The solder coated layer includes Sn as a main ingredient and 0 to 2 mass % of Ag, and coats the core. The solder coated layer has an average grain diameter of crystal grains of 3 μm or less, and the solder material has a spherical diameter of 1 to 230 μm and a sphericity of 0.95 or more.
Abstract:
A solder ball according to the present invention contains 0.2 to 2.2% by mass of Zn, and a balance of Sn, and has a spherical diameter of 0.1 to 120 μm and a yellowness (b*) in an L*a*b* color system of 2.70 or more and 9.52 or less. An oxide film is formed by performing aging treatment. By producing a solder ball having a yellowness of 2.70 or more and 9.52 or less, it is possible to suppress the growth of a Cu3Sn layer and/or a Cu—Zn(—Sn) layer during joining.