Abstract:
A semiconductor package includes a package substrate including a substrate connection pad. At least one semiconductor chip includes at least one redistribution layer. The at least one redistribution layer covers at least a portion of a chip connection pad and extends along an upper surface of the at least one semiconductor chip in a first direction in which the chip connection pad faces toward an edge of the at least one semiconductor chip. At least one interconnection line disposed on a side of the at least one semiconductor chip electrically connects the substrate connection pad to the at least one redistribution layer. The at least one redistribution layer includes a protruding portion protruding from the edge of the at least one semiconductor chip to contact the at least one interconnection line.
Abstract:
Embodiments of the inventive concept include a semiconductor package having a plurality of stacked semiconductor chips. A multi-layered substrate includes a central insulation layer, an upper wiring layer disposed on an upper surface of the central insulation layer, and a first lower wiring layer disposed on a lower surface of the central insulation layer. The stacked semiconductor chips are connected to the multi-layered substrate and/or each other using various means. The semiconductor package is capable of high performance operation, like a semiconductor package based on flip-ship bonding, and also meets the need for large capacity by overcoming a limitation caused by a single semiconductor chip. Embodiments of the inventive concept also include methods of manufacturing the semiconductor package.
Abstract:
A semiconductor package may include a substrate including a substrate connection terminal, at least one semiconductor chip stacked on the substrate and having a chip connection terminal, a first insulating layer covering at least portions of the substrate and the at least one semiconductor chip, and/or an interconnection penetrating the first insulating layer to connect the substrate connection terminal to the chip connection terminal. A semiconductor package may include stacked semiconductor chips, edge portions of the semiconductor chips constituting a stepped structure, and each of the semiconductor chips including a chip connection terminal; at least one insulating layer covering at least the edge portions of the semiconductor chips; and/or an interconnection penetrating the at least one insulating layer to connect to the chip connection terminal of each of the semiconductor chips.
Abstract:
A semiconductor package including a heat spreading layer having at least one hole, a first semiconductor chip below the heat spreading layer, a redistribution structure below the first semiconductor chip, a first mold layer between the heat spreading layer and the redistribution structure, a shielding wall extending from the redistribution structure and the heat spreading layer and surrounding the first semiconductor chip, and a first conductive pillar extending from the redistribution structure into the hole may be provided.
Abstract:
A semiconductor package includes a master chip and a slave chip stacked on a substrate. The master chip and the slave chip are connected to one another by a bonding wire. The master chip and the slave chip are connected in series with an external circuit. The semiconductor package may have a low loading factor and excellent performance, and may be mass produced at low costs.
Abstract:
A semiconductor package including a heat spreading layer having at least one hole, a first semiconductor chip below the heat spreading layer, a redistribution structure below the first semiconductor chip, a first mold layer between the heat spreading layer and the redistribution structure, a shielding wall extending from the redistribution structure and the heat spreading layer and surrounding the first semiconductor chip, and a first conductive pillar extending from the redistribution structure into the hole may be provided.
Abstract:
A semiconductor package includes a substrate; first and second pads that are disposed separate from each other on the substrate; and a solder resist that allows a portion of the substrate in a region between the first and second pads and to be exposed while covering a portion of the first and second pads in a region other than the region between the first and second pads.