摘要:
A high power narrow band, high repetition rate laser light source optical improvement apparatus and methods are disclosed with a fast angularly positionable mirror having a mirror mounting frame, a reflective optic with a coefficient different from that of the mounting frame, at least one flexure mount fromed in the mounting frame that is flexible having flexure arm attached the flexture to the mounting frame. The apparatus may include a flexure force mechanism having an elongated rod. The force mechanism may pre-stress the flexure. The mirror maybe a grating which includes a substrate with metallic layer formed on the substrate, and a protective coating made of silica formed on the reflective metallic layer. The grating maybe actively tuned using an electro- or magneto-sensitive element. Oxides of the metal in the reflective layer may be removed by a hydrogen purge system exposed to deep ultraviolet radiation.
摘要:
The present invention provides long life optics for a modular, high repetition rate, ultraviolet gas discharge laser systems producing a high repetition rate high power output beam. The invention includes solutions to a surface damage problem discovered by Applicants on CaF2 optics located in high pulse intensity sections of the output beam of prototype laser systems. Embodiments include an enclosed and purged beam path with beam pointing control for beam delivery of billions of output laser pulses. Optical components and modules described herein are capable of controlling ultraviolet laser output pulses with wavelength less than 200 nm with average output pulse intensities greater than 1.75×106 Watts/cm2 and with peak intensity or greater 3.5×106 Watts/cm2 for many billions of pulses as compared to prior art components and modules which failed after only a few minutes in these pulse intensities. Techniques and components are disclosed for minimizing the potential for optical damage and for reducing the pulse energy density to less than 100×10−6 J/cm3. Important improvements described in this specification have been grouped into the following subject matter categories: (1) Solution to CaF2 surface damage discovered by Applicants, (2) description of a high power ArF MOPA laser system, (3) description of beam delivery units, (4) polarization considerations (5) a high speed water-cooled auto shutter energy detector module and (6) other improvements.
摘要翻译:本发明提供了用于产生高重复率高功率输出光束的模块化高重复率紫外线气体放电激光器系统的长寿命光学器件。 本发明包括由申请人发现的位于原型激光系统的输出光束的高脉冲强度部分中的CaF 2光学器件的表面损伤问题的解决方案。 实施例包括用于束传送数十亿个输出激光脉冲的光束指向控制的封闭和清除的光束路径。 本文所述的光学部件和模块能够控制波长小于200nm的紫外激光输出脉冲,平均输出脉冲强度大于1.75×6 /瓦/ cm 2,并且与 与在这些脉冲强度中仅仅几分钟之后失效的现有技术部件和模块相比,数十亿个脉冲的峰值强度或更大的3.5×10 6 / cm 2 / SUP。 公开了用于最小化光学损伤的可能性和将脉冲能量密度降低到小于100×10 -6 / cm 3的技术和部件。 本说明书中描述的重要改进已分为以下主题类别:(1)由申请人发现的CaF 2 2表面损伤的解决方案,(2)高功率ArF MOPA激光系统的描述( 3)光束传输单元的描述,(4)偏振考虑(5)高速水冷自动快门能量检测器模块和(6)其他改进。
摘要:
A method and apparatus for debris removal from a reflecting surface of an EUV collector in an EUV light source is disclosed which may comprise the reflecting surface comprises a first material and the debris comprises a second material and/or compounds of the second material, the system and method may comprise a controlled sputtering ion source which may comprise a gas comprising the atoms of the sputtering ion material; and a stimulating mechanism exciting the atoms of the sputtering ion material into an ionized state, the ionized state being selected to have a distribution around a selected energy peak that has a high probability of sputtering the second material and a very low probability of sputtering the first material. The stimulating mechanism may comprise an RF or microwave induction mechanism.
摘要:
An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.
摘要:
An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.
摘要:
The bandwidth selection mechanism includes a first actuator mounted on a second face of a dispersive optical element, the second face being opposite from a reflective face, the first actuator having a first end coupled to a first end block and a second end coupled to a second end block, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body of the dispersive optical element along the longitudinal axis of the body and in a first direction normal to the reflective face of the dispersive optical element. The bandwidth selection mechanism also includes a second actuator being operative to apply equal and opposite forces to bend the body along the longitudinal axis of the body, in a second direction perpendicular to the reflective face of the dispersive optical element.
摘要:
A mechanism for bandwidth selection includes a dispersive optical element having a body including a reflective face of dispersion including an area of incidence extending in a longitudinal axis direction along the reflective face of the dispersive optical element. The body also includes a first end block, disposed at a first longitudinal end of the body and a second end block, disposed at a second longitudinal end of the body, the second longitudinal end being opposite the first longitudinal end. The bandwidth selection mechanism also includes a first actuator mounted on a second face of the dispersive optical element, the second face being opposite from the reflective face, the first actuator having a first end coupled to the first end block and a second end coupled to the second end block, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body along the longitudinal axis of the body and in a first direction normal to the reflective face of the dispersive optical element. The bandwidth selection mechanism also includes a second actuator mounted on a third face of the dispersive optical element, the third face being normal to the reflective face, the second actuator having a first end coupled to the first end block with a first flexture and a second end coupled to the second end block with a second flexture, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body along the longitudinal axis of the body, in a second direction perpendicular to the reflective face of the dispersive optical element, the second direction also being perpendicular to the first direction the second actuator including a pressurized fluid force application mechanism. A method of selecting bandwidth is also disclosed.
摘要:
A technique for bandwidth control of an electric discharge laser. Line narrowing equipment is provided having at least one piezoelectric drive and a fast bandwidth detection means and a bandwidth control having a time response of less than about 1.0 millisecond. In a preferred embodiment wavelength tuning mirror is dithered at dither rates of more than 500 dithers per second within a very narrow range of pivot angles to cause a dither in nominal wavelength values to produce a desired effective bandwidth of series of laser pulses.