Abstract:
A terahertz laser suitable for emitting at least one first electromagnetic radiation, a first emission frequency of which is between 700 and 1200 GHz. The laser comprises an infrared laser source and a resonant cavity arranged to be optically pumped by the infrared laser source, the resonant cavity containing ammonia gas as an amplifier medium and having at least one configuration in which the resonant cavity is a resonant cavity at the first emission frequency. The infrared laser source is a continuous semiconductor laser source capable of exciting molecules of the amplifier medium from an initial energy level to at least one first excited energy level, the molecules of the amplifier medium placed in the first energy level being able to relax through a pure inversion transition for which the relaxation energy corresponds to the first emission frequency.
Abstract:
A laser oscillator comprises a heat exchanger which cools a gas medium. The heat exchanger includes a cooling part which performs heat exchange between the gas medium and a cooling medium, a tubular member fixed to a frame body, and a foreign matter collection container. The tubular member is disposed so that the gas medium which flows out of the cooling part moves along an outer surface of the tubular member and then changes a proceeding direction to flow into an inlet portion. The foreign matter collection container collects foreign matters which are separated from a flow of the gas medium.
Abstract:
A temperature controller for a gas laser which controls temperatures of a plurality of temperature-controlled apparatuses including a first temperature-controlled portion requiring a high-precision temperature-control and a second temperature-controlled portion requiring a low-precision temperature-control as compared with the first temperature-controlled portion and allowing a temperature-control with a low or high temperature as compared with the first temperature-controlled portion, comprises a first temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each first temperature-controlled portion, a second temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each second temperature-controlled portion, a first piping system connecting the first temperature control portion and each first temperature-controlled portion in parallel, and a second piping system connecting the second temperature control portion and each second temperature-controlled portion in parallel.
Abstract:
Provided is a laser based on the formation of an inverted population in an atom or ion of an element wherein at least one oxidation state of the element serves as a catalyst with atomic hydrogen to form states that are lower in energy than that of the n=1 state of having a binding energy of 13.6 eV. The catalytic reaction between atomic hydrogen and the catalyst pumps the exited states of catalyst or species caused by the ionization of the catalyst as the reaction releases energy with the formation of atomic-hydrogen states with binding energies lower than those of uncatalyzed atomic hydrogen. In an embodiment, the system comprises a source of catalyst and hydrogen gases and a means to cause a plasma of these gases. The plasma dissociates molecular hydrogen to atomic hydrogen and ionizes the source of catalyst to form the catalyst. The catalyst looses one or more electrons during the catalytic reaction, and the recombination of electrons with the ionized catalyst creates an inverted population.
Abstract:
A wavemeter and method for measuring bandwidth for a high repetition rate gas discharge laser having an output laser bean comprising a pulsed output of greater than or equal to 15 mJ per pulse, sub-nanometer bandwidth tuning range pulses having a femptometer bandwidth precision and tens of femptometers bandwidth accuracy range, for measuring bandwidth on a pulse to pulse basis at pulse repetition rates of 4000 Hz and above, is disclosed which may comprise a focusing lens having a focal length; an optical interferometer creating an interference fringe pattern; an optical detection means positioned at the focal length from the focusing lens; and a bandwidth calculator calculating bandwidth from the position of interference fringes in the interference fringe pattern incident on the optical detection means, defining a DID and a DOD, the respective distances between a pair of first fringe borders and between a pair of second fringe borders in the interference pattern on an axis of the interference pattern, and according to the formula Δλ=λ0[DOD2−DID2]/[8f2−D02], where λ0 is an assumed constant wavelength and D0=(DOD−DID)/2, and f is the focal length. The optical detector may be a photodiode array. The wavemeter may have an optical interferometer having a slit function; the slit function and the focal length being selected to deliver to the optical detector the two innermost fringes of the optical interference ring pattern. The optical detector may comprise an array of pixels each having a height and width and the array having a total width; and an aperture at the optical input to the optical interferometer may selectively input to the optical interferometer a portion of a beam of light sufficient for the output of the etalon to illuminate the optical detector over the height of each respective pixel height and the total width. The optical interferometer may comprise an etalon having a slit function of 3 pm or less and a finesses of 25 or greater; and the focal length may be 1.5 meters. A second stage diffuser may be placed between the first stage diffuser and the etalon delivering a narrow cone of light to the etalon, and an aperture between the second stage diffuser and the etalon may deliver to the etalon a thin strip of the narrow cone of light.
Abstract:
A high repetition rate, compact, modular gas discharge, ultraviolet laser. The laser is useful as a light source for very rapid inspections of wafers in an integrated circuit fabrication process. It is also useful for reticle writing at very rapid rates. A preferred embodiment operates at pulse repetition rates of 1000 to 4000 Hz and is designed for round-the-clock production line operation. This preferred embodiment comprises a pulse control unit which controls the timing of pulses to an accuracy of less than 4 nanoseconds. Preferred embodiments of this gas discharge laser can be configured to operate with a KrF gas mixture, an ArF gas mixture or an F2 gas mixture, each with an approximate buffer gas, producing 248 nm, 197 nm or 157 nm ultraviolet light pulses.
Abstract:
A technique for bandwidth control of an electric discharge laser. Line narrowing equipment is provided having at least one piezoelectric drive and a fast bandwidth detection means and a bandwidth control having a time response of less than about 1.0 millisecond. In a preferred embodiment wavelength tuning mirror is dithered at dither rates of more than 500 dithers per second within a very narrow range of pivot angles to cause a dither in nominal wavelength values to produce a desired effective bandwidth of series of laser pulses.
Abstract:
Compact, high-power, near-diffraction-limited sources of radiation in the near infrared spectral region are provided by a new class of power amplifiers that can be pumped by conventional high-power, multimode, relatively-broadband 1-D and 2-D laser diode arrays, where the pumped amplifier gain medium is an atomic vapor of one of the alkali elements (Li, Na, K, Rb, Cs), buffered with a mixture of rare-gas (He, Ar, Kr, Ne, or Xe) and selected molecular gases. Given the central role of the alkali atomic vapor as the entity providing amplifier gain, this new type of amplifier is herein designated as the diode-pumped alkali amplifier (DPAA).
Abstract:
An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses. The master oscillator is equipped with a line selection package for selecting the strongest F2 spectral line.
Abstract:
An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses. The master oscillator is equipped with a line narrowing package having a very fast tuning mirror capable of controlling centerline wavelength on a pulse-to-pulse basis at repetition rates of 4000 Hz or greater to a precision of less than 0.2 pm.