Abstract:
A semiconductor device includes a first nitride semiconductor layer formed over a substrate, a second nitride semiconductor layer formed over the first nitride semiconductor layer, a third nitride semiconductor layer formed over the second nitride semiconductor layer, a fourth nitride semiconductor layer formed over the third nitride semiconductor layer, a trench that penetrates the fourth nitride semiconductor layer and reaches as far as the third nitride semiconductor layer, a gate electrode disposed by way of a gate insulation film in the trench, a first electrode and a second electrode formed respectively over the fourth nitride semiconductor layer on both sides of the gate electrode, and a coupling portion for coupling the first electrode and the first nitride semiconductor layer.
Abstract:
A semiconductor device includes a substrate, a plurality of transistors formed on a transistor region of the substrate, a plurality of diodes formed on a diode region of the substrate, the transistors and the diodes being arranged in a first direction, a first line formed over the substrate and extending between the transistors and the diodes, a plurality of first branch lines extending from the first line in the first direction to form a drain electrode of the transistors, and a plurality of second branch lines extending from the first line in the first direction to form an anode electrode of the diodes.
Abstract:
To provide a semiconductor device having improved characteristics. The semiconductor device has, over a substrate thereof, a first buffer layer (GaN), a second buffer layer (AlGaN), a channel layer, and a barrier layer, a trench penetrating through the barrier layer and reaching the middle of the channel layer, a gate electrode placed in the trench via a gate insulating film, and a source electrode and a drain electrode formed on both sides of the gate electrode respectively. By a coupling portion in a through-hole reaching the first buffer layer, the buffer layer and the source electrode are electrically coupled to each other. Due to a two-dimensional electron gas produced in the vicinity of the interface between these two buffer layers, the semiconductor device can have an increased threshold voltage and improved normally-off characteristics.
Abstract:
Characteristics of a semiconductor device are improved.A semiconductor device of the present invention includes a buffer layer composed of a first nitride semiconductor layer, a channel layer composed of a second nitride semiconductor layer, and a barrier layer composed of a third nitride semiconductor layer, which are sequentially laminated, and a cap layer composed of a fourth nitride semiconductor layer of mesa type, which is formed over the barrier layer. The semiconductor device also includes a source electrode formed on one side of the cap layer, a drain electrode formed on the other side of the cap layer, and a first gate electrode formed over the cap layer. The first gate electrode and the cap layer are Schottky-joined. A Schottky gate electrode (the first gate electrode) is provided over the cap layer in this way, so that when a gate voltage is applied, an electric field is applied to the entire cap layer and a depletion layer spreads. Therefore, it is possible to suppress a gate leakage current.
Abstract:
Disclosed is a semiconductor device in which a resistance component resulting from wiring is reduced. A plurality of transistor units are arranged side by side in a first direction, each of which has a plurality of transistors. The gate electrodes of the transistors extend in the first direction. First source wiring extends between first transistor unit and second transistor unit, and first drain wiring extends between the second transistor unit and third transistor unit. Second drain wiring extends on the side of the first transistor unit opposite to the side where the first source wiring extends, and second source wiring extends on the side of the third transistor unit opposite to the side where the second drain wiring extends.
Abstract:
The ringing of a switching waveform of a semiconductor device is restrained. For example, an interconnect (L5) is laid which functions as a source of a power transistor (Q3) and a cathode of a diode (D4), and further functioning as a drain of a power transistor (Q4) and an anode of a diode (D3). In other words, a power transistor and a diode coupled to this power transistor in series are formed in the same semiconductor chip; and further an interconnect functioning as a drain of the power transistor and an interconnect functioning as an anode of the diode are made common to each other. This structure makes it possible to decrease a parasite inductance between the power transistor and the diode coupled to each other in series.
Abstract:
Disclosed is a power conversion circuit that suppresses the flow of a through current to a switching element based on a normally-on transistor. The power conversion circuit includes a high-side transistor and a low-side transistor, which are series-coupled to each other to form a half-bridge circuit, and two drive circuits, which complementarily drive the gate of the high-side transistor and of the low-side transistor. The high-side transistor is a normally-off transistor. The low-side transistor is a normally-on transistor.
Abstract:
Disclosed is a semiconductor device in which a resistance component resulting from wiring is reduced. A plurality of transistor units are arranged side by side in a first direction (Y direction in the view), each of which has a plurality of transistors. The gate electrodes of the transistors extend in the first direction. First source wiring extends between first transistor unit and second transistor unit, and first drain wiring extends between the second transistor unit and third transistor unit. Second drain wiring extends on the side of the first transistor unit opposite to the side where the first source wiring extends, and second source wiring extends on the side of the third transistor unit opposite to the side where the second drain wiring extends.
Abstract:
A semiconductor device includes a channel layer formed over a substrate, a barrier layer formed on the channel layer and a gate electrode. A second gate electrode section is formed on the gate electrode via a gate insulating film. It becomes possible to make an apparent threshold voltage applied to the second gate electrode of a MISFET higher than an original threshold voltage applied to the gate electrode for forming a channel under the gate electrode by providing an MIM section configured by the gate electrode, the gate insulating film and the second gate electrode in this way.
Abstract:
An object of the present invention is to shorten the switching delay time of a semiconductor device.Transistor units are provided between a source bus line and a drain bus line that are provided apart from each other in a first direction, and a plurality of gate electrodes that extends in the first direction and is provided apart from each other in a second direction orthogonal to the first direction is provided in the transistor units. One ends of the gate electrodes on the source bus line side are coupled by a gate connection line extending in the second direction, and a gate bus line electrically coupled to the gate connection line is provided above the gate connection line. The gate electrodes and the gate connection line are formed using a wiring layer of the first layer, the source bus line and the drain bus line are formed using a wiring layer of the second layer, and the gate bus line is formed using a wiring layer of the third layer.