Abstract:
To enhance electromigration resistance of an electrode.A drain electrode is partially formed on a side surface of a drain pad. In this case, the drain electrode is integrated with the drain pad and extends from the side surface of the drain pad in a first direction (y direction). A recessed portion is located in a region overlapping with the drain electrode in a plan view. At least a part of the drain electrode is buried in the recessed portion. A side surface of the recessed portion, which faces the drain pad, enters the drain pad in the first direction (y direction).
Abstract:
To enhance electromigration resistance of an electrode.A drain electrode is partially formed on a side surface of a drain pad. In this case, the drain electrode is integrated with the drain pad and extends from the side surface of the drain pad in a first direction (y direction). A recessed portion is located in a region overlapping with the drain electrode in a plan view. At least a part of the drain electrode is buried in the recessed portion. A side surface of the recessed portion, which faces the drain pad, enters the drain pad in the first direction (y direction).
Abstract:
A semiconductor device includes an interlayer insulating film INS2, adjacent Cu wirings M1W formed in the interlayer insulating film INS2, and an insulating barrier film BR1 which is in contact with a surface of the interlayer insulating film INS2 and surfaces of the Cu wirings M1W and covers the interlayer insulating film INS2 and the Cu wirings M1W. Between the adjacent Cu wirings M1W, the interlayer insulating film INS2 has a damage layer DM1 on its surface, and has an electric field relaxation layer ER1 having a higher nitrogen concentration than a nitrogen concentration of the damage layer DM1 at a position deeper than the damage layer DM1.
Abstract:
There is a need to improve reliability of the semiconductor device. A semiconductor device includes a printed circuit board and a semiconductor chip mounted over the printed circuit board. The semiconductor chip includes a pad, an insulation film including an opening to expose part of the pad, and a pillar electrode formed over the pad exposed from the opening. The printed circuit board includes a terminal and a resist layer including an opening to expose part of the terminal. The pillar electrode of the semiconductor chip and the terminal of the printed circuit board are coupled via a solder layer. Thickness h1 of the pillar electrode is measured from the upper surface of the insulation film. Thickness h2 of the solder layer is measured from the upper surface of the resist layer. Thickness h1 is greater than or equal to a half of thickness h2 and is smaller than or equal to thickness h2.
Abstract:
To enhance electromigration resistance of an electrode.A drain electrode is partially formed on a side surface of a drain pad. In this case, the drain electrode is integrated with the drain pad and extends from the side surface of the drain pad in a first direction (y direction). A recessed portion is located in a region overlapping with the drain electrode in a plan view. At least a part of the drain electrode is buried in the recessed portion. A side surface of the recessed portion, which faces the drain pad, enters the drain pad in the first direction (y direction).
Abstract:
A semiconductor device includes an interlayer insulating film INS2, adjacent Cu wirings M1W formed in the interlayer insulating film INS2, and an insulating barrier film BR1 which is in contact with a surface of the interlayer insulating film INS2 and surfaces of the Cu wirings M1W and covers the interlayer insulating film INS2 and the Cu wirings M1W. Between the adjacent Cu wirings M1W, the interlayer insulating film INS2 has a damage layer DM1 on its surface, and has an electric field relaxation layer ER1 having a higher nitrogen concentration than a nitrogen concentration of the damage layer DM1 at a position deeper than the damage layer DM1.
Abstract:
A semiconductor chip SC includes an electrode pad PAD. A Cu pillar PIL is formed on the electrode pad PAD. In addition, an interconnect substrate INT includes a connection terminal TER. The connection terminal TER contains Cu. For example, the connection terminal TER is formed of Cu, and is formed, for example, in a land shape. However, the connection terminal TER may not be formed in a land shape. The Cu pillar PIL and the connection terminal TER are connected to each other through a solder layer SOL. The solder layer SOL contains Sn. A Ni layer NIL is formed on either the Cu pillar PIL or the connection terminal TER. The minimum value L of the thickness of the solder layer SOL is equal to or less than 20 μm.
Abstract:
To enhance electromigration resistance of an electrode.A drain electrode is partially formed on a side surface of a drain pad. In this case, the drain electrode is integrated with the drain pad and extends from the side surface of the drain pad in a first direction (y direction). A recessed portion is located in a region overlapping with the drain electrode in a plan view. At least a part of the drain electrode is buried in the recessed portion. A side surface of the recessed portion, which faces the drain pad, enters the drain pad in the first direction (y direction).
Abstract:
A semiconductor device includes an interlayer insulating film INS2, adjacent Cu wirings M1W formed in the interlayer insulating film INS2, and an insulating barrier film BR1 which is in contact with a surface of the interlayer insulating film INS2 and surfaces of the Cu wirings M1W and covers the interlayer insulating film INS2 and the Cu wirings M1W. Between the adjacent Cu wirings M1W, the interlayer insulating film INS2 has a damage layer DM1 on its surface, and has an electric field relaxation layer ER1 having a higher nitrogen concentration than a nitrogen concentration of the damage layer DM1 at a position deeper than the damage layer DM1.
Abstract:
An interlayer dielectric layer covers an electric fuse element. A resistance layer made of silicon metal is arranged on the interlayer dielectric layer and directly above the electric fuse element.