Abstract:
A finFET device according to some examples herein may include an active gate element above an active fin element and a dummy fin element that partially breaks the active gate element. In another example, a dummy gate element adjacent to an active gate element contains a dummy fin element that partially breaks the dummy gate element. In another example, a first dummy fin element partially breaks an active gate element and a second dummy fin element partially breaks a dummy gate element. In another example, the dummy fin element is of the same material as the active fin element. In another example, the dummy fin element partially breaks a gate element but does not extend to the substrate like the active fin element.
Abstract:
The n-type to p-type fin-FET strength ratio in an integrated logic circuit may be tuned by the use of cut regions in the active and dummy gate electrodes. In some examples, separate cut regions for the dummy gate electrodes and the active gate electrode may be used to allow for different lengths of gate pass-active regions resulting in appropriately tuned integrated logic circuits.
Abstract:
Multigate devices and fabrication methods that mitigate the layout effects are described. In conventional processes to fabricate multigate semiconductor devices such as FinFET devices, long isolation cut masks may be used. This can lead to undesirable layout effects. To mitigate or eliminate the layout effect, fabrication methods are proposed in which the interlayer dielectric (ILD) layer remains intact at the gate cut location during the fabrication process.
Abstract:
A semiconductor device may include a source/drain contact trench adjacent to a gate. The source/drain contact trench may include a first portion and a second portion on the first portion. The semiconductor device also may include an insulating contact spacer liner within the source/drain contact trench. The insulating contact spacer liner contacts the first portion but not the second portion of the source/drain contact trench. The semiconductor device may further include a conductive material within the insulating contact spacer liner and the second portion of the source/drain contact trench. The conductive material may land in a source/drain region of the semiconductor device.
Abstract:
The n-type to p-type fin-FET strength ratio in an integrated logic circuit may be tuned by the use of cut regions in the active and dummy gate electrodes. In some examples, separate cut regions for the dummy gate electrodes and the active gate electrode may be used to allow for different lengths of gate pass-active regions resulting in appropriately tuned integrated logic circuits.
Abstract:
A sacrificial cap is grown on an upper surface of a conductor. A dielectric spacer is against a side of the conductor. An upper dielectric side spacer is formed on a sidewall of the sacrificial cap. The sacrificial cap is selectively etched, leaving a cap recess, and the upper dielectric side spacer facing the cap recess. Silicon nitride is filled in the cap recess, to form a center cap and a protective cap having center cap and the upper dielectric spacer.
Abstract:
To avoid the problems associated with low density spin on dielectrics, some examples of the disclosure include a finFET with an oxide material having different densities. For example, one such finFET may include an oxide material located in a gap between adjacent fins, the oxide material directly contacts the adjacent fins of the plurality of fins with a first density proximate to a top layer of the oxide material and a second density proximate to a bottom layer of the oxide material and wherein the first density is greater than the second density.
Abstract:
Multigate devices and fabrication methods that mitigate the layout effects are described. In conventional processes to fabricate multigate semiconductor devices such as FinFET devices, long isolation cut masks may be used. This can lead to undesirable layout effects. To mitigate or eliminate the layout effect, fabrication methods are proposed in which the interlayer dielectric (ILD) layer remains intact at the gate cut location during the fabrication process.
Abstract:
A semiconductor fin includes a channel region. A gate-stressor member, formed of a metal, extends transverse to the fin and includes gate surfaces that straddle the fin in the channel region. The gate-stressor member has a configuration that includes a partial cut spaced from the fin by a cut distance. The configuration causes, through the gate surfaces, a transverse stress in the fin, having a magnitude that corresponds to the cut distance. Transverse stressor members, formed of a metal, straddle the fin at regions outside of the channel region and cause, at the regions outside of the channel region, additional transverse stresses in the fin. The magnitude that corresponds to the cut distance, in combination with the additional transverse stresses, induces a longitudinal compressive strain in the channel region.