Abstract:
A semiconductor device includes a silicon carbide semiconductor layer, a termination region disposed in the silicon carbide semiconductor layer, an insulating film covering part of the termination region, an electrode disposed on the silicon carbide semiconductor layer, a seal ring disposed on remaining part of the termination region and surrounding the electrode, and a passivation film covering the insulating film and the seal ring. Assuming that an outer peripheral end of the seal ring and an outer peripheral end of the passivation film have distance L2 at a side of the silicon carbide semiconductor layer, the outer peripheral end of the seal ring and the outer peripheral end of the passivation film have distance L1 at a corner, and the outer peripheral end of the passivation film at the corner has radius of curvature R1, L1>L2 and R1≥L2 are satisfied.
Abstract:
An assembled battery includes a cell stack formed by stacking a plurality of unit cells in the same direction, positive electrode-side bus bars respectively connected to positive electrode tabs of the unit cells, and negative electrode-side bus bars respectively connected to negative electrode tabs of the unit cells. A positive electrode-side bus bar connected to a positive electrode tab of a first unit cell of adjacent unit cells in the cell stack, and a negative electrode-side bus bar connected to a negative electrode tab of a second unit cell, are connected to each other on one of the surfaces of the cell stack.
Abstract:
A liquid resin composition includes a liquid epoxy resin, a liquid curing agent, a curing accelerator and a ceramic filler. The liquid epoxy resin contains a first epoxy resin having a polyalkylene glycol framework. The liquid curing agent has a plurality of phenolic hydroxy groups per molecule. A content of the first epoxy resin in the liquid epoxy resin is in a range from 30% to 70% by mass, inclusive. The ceramic filler has an average particle diameter of 50 μm or less, and a content of the ceramic filler in the liquid resin composition is in a range from 50% to 90% by mass, inclusive. The liquid resin composition has a viscosity of 100 Pa·s or less at 25° C.
Abstract:
A semiconductor device according to an exemplary embodiment includes a semiconductor substrate, a gate insulating layer, a gate electrode, an interlayer insulating layer, a contact hole, a metal layer, and a source line. The gate electrode is disposed on the gate insulating layer. The interlayer insulating layer covers the gate electrode. The contact hole penetrates the gate insulating layer and the interlayer insulating layer, causes a portion of the surface of the semiconductor substrate to be exposed, and includes an inner surface defined by a side surface of the interlayer insulating layer and a side surface of the gate insulating layer. The metal layer covers an upper surface of the interlayer insulating layer, the inner surface of the contact hole, and at least part of the portion of the surface of the semiconductor substrate exposed by the contact hole.
Abstract:
An electricity storage device includes a battery, a discharge device, and a controller for controlling charging and discharging of the battery. The discharge device includes a swelling member, a movable switch, and a discharge switch. When the swelling member swells, the movable switch is moved. When the movable switch is moved, the discharge switch is turned on. A signal indicating that the discharge switch is turned on is transmitted to the controller to cause the battery to start discharging of electricity.
Abstract:
A first battery block includes a plurality of cells held in a first battery holder. A second battery block includes a plurality of cells held in a second battery holder. In a plan view from the longitudinal direction of the cells, the first battery holder and the second battery holder are disposed so as to be adjacent to each other. The first line formed by interconnecting the center points of the cells disposed on the second battery holder side, of the plurality of cells held in the first battery holder, is parallel with the second line formed by interconnecting the center points of the cells disposed on the first battery holder side, of the plurality of cells held in the second battery holder.
Abstract:
A semiconductor device according to an exemplary embodiment includes a semiconductor substrate, an interlayer insulating layer, at least one electrode, an inorganic protective layer, and an organic protective layer. The interlayer insulating layer is formed on the semiconductor substrate and has at least one opening. The at least one electrode has part formed on an edge of the at least one opening, and has other part electrically connected, in the at least one opening, to the semiconductor substrate. The inorganic protective layer includes an inner edge portion and an outer edge portion. The inner edge portion covers an edge of the at least one electrode. The inorganic protective layer, except for the inner edge portion, is formed on the interlayer insulating layer. The organic protective layer covers the inorganic protective layer. One of the inner edge portion and the outer edge portion of the inorganic protective layer has an undercut.
Abstract:
A storage battery rack includes bottom frame portion, ceiling frame portion, long support posts, and side panels installed facing the support posts. Each support post has a plurality of attachment holes with a predetermined pitch along the longitudinal direction. Side panel has a plurality of female screw holes with a pitch corresponding to the predetermined pitch. Each side panel is attached to a pair of the support posts with screws fastened to attachment holes and the female screw holes. Side panel has a plurality of parallel support portions. A distance between support portions is set substantially equal to a total value of a predetermined height dimension of a refrigerant passage formed between a plurality of storage batteries and a predetermined height dimension of each storage battery.
Abstract:
A silicon carbide semiconductor device includes a first conductivity type silicon carbide substrate having an active region and a termination region surrounding the active region, a plurality of unit cells located in the active region, and a termination structure located in the termination region. Each unit cell is provided with a transistor structure. The termination structure includes the silicon carbide semiconductor layer, a second conductivity type second body region surrounding the active region, one or more second conductivity type rings surrounding the second body region, one or more outer-circumferential upper source electrodes surrounding the active region, and an upper gate electrode. The silicon carbide semiconductor device further includes a first protective film and a second protective film. The first protective film covers the inner-circumferential upper source electrode, the upper gate electrode, and an inner side surface of the one or more outer-circumferential upper source electrodes except for a pad region. The second protective film covers the first protective film and at least a part of the one or more second conductivity type rings.
Abstract:
A battery block includes a holding unit that holds a plurality of cells. The holding unit is made of a material having a heat conductivity. The holding unit includes openings that are open over the entire length of the side surfaces of the cells in the longitudinal direction. Each opening is formed so that, on the side surface of each cell, the area of a first region exposed to the outside through the opening is smaller than that of a second region other than the first region.