Abstract:
A simulating method for a flash memory and a simulator using the simulating method are provided. The simulator is configured to couple to a memory controller. The simulating method includes: setting a predetermined response condition; providing multiple command sets, wherein each of the command sets corresponds to a memory type; receiving a first command from the memory controller; identifying a second command in the command sets according to the first command; determining if the second command matches the predetermined response condition; obtaining a first signal corresponding to the second command according to the predetermined response condition; and, transmitting the first signal to the memory controller. Accordingly, the usage of the simulator is flexible.
Abstract:
A data writing method for writing data into a physical erasing unit and a memory controller and a memory storage apparatus using the data writing method are provided. The method includes dividing the data into a plurality of information frames in a unit of one physical programming unit. The method also includes writing the information frames in sequence into at least one physical programming unit constituted by memory cells disposed on at least one first word line and programming the storage state of memory cells disposed on at least one second word line following the first word line to an auxiliary pattern. Accordingly, the method effectively prevents data stored in the physical erasing unit, which is not full of data, from being lost due to a high temperature.
Abstract:
A data writing method for writing data into a memory cell of a rewritable non-volatile memory module, and a memory controller and a memory storage apparatus using the same area provided. The method includes recording a wear degree of the memory cell and adjusting an initial write voltage and a write voltage pulse time corresponding to the memory cell based on the wear degree thereof. The method further includes programming the memory cell by applying the initial write voltage and the write voltage pulse time, thereby writing the data into the memory cell. Accordingly, data can be accurately stored into the rewritable non-volatile memory module by the method.
Abstract:
A read voltage setting method for a rewritable non-volatile memory module is provided. The method includes: reading test data stored in memory cells of a word line to obtain a corresponding critical voltage distribution and identifying a default read voltage corresponding to the word line based on the corresponding critical voltage distribution; applying a plurality of test read voltages obtained according to the default read voltage to the word line to read a plurality of test page data; and determining an optimized read voltage corresponding to the word line according to the minimum error bit number among a plurality of error bit numbers of the test page data. The method further includes calculating a difference value between the default read voltage and the optimized read voltage as a read voltage adjustment value corresponding to the word line and recording the read voltage adjustment value in a retry table.
Abstract:
A decoding method, a memory storage device and a memory controlling circuit unit are provided. The method includes: reading memory cells according to a first reading voltage to obtain first verifying bits; executing a decoding procedure including a probability decoding algorithm according to the first verifying bits to obtain first decoded bits, and determining whether a decoding is successful by using the decoded bits; if the decoding is failed, reading the memory cells according to a second reading voltage to obtain second verifying bits, and executing the decoding procedure according to the second verifying bits to obtain second decoded bits. The second reading voltage is different from the first reading voltage, and the number of the second reading voltage is equal to the number of the first reading voltage. Accordingly, the ability for correcting errors is improved.
Abstract:
A data writing method for writing data into a physical erasing unit and a memory controller and a memory storage apparatus using the data writing method are provided. The method includes dividing the data into a plurality of information frames in a unit of one physical programming unit. The method also includes writing the information frames in sequence into at least one physical programming unit constituted by memory cells disposed on at least one first word line and programming the storage state of memory cells disposed on at least one second word line following the first word line to an auxiliary pattern. Accordingly, the method effectively prevents data stored in the physical erasing unit, which is not full of data, from being lost due to a high temperature.
Abstract:
A simulating method for a flash memory and a simulator using the simulating method are provided. The simulator is configured to couple to a memory controller. The simulating method includes: setting a predetermined response condition; providing multiple command sets, wherein each of the command sets corresponds to a memory type; receiving a first command from the memory controller; identifying a second command in the command sets according to the first command; determining if the second command matches the predetermined response condition; obtaining a first signal corresponding to the second command according to the predetermined response condition; and, transmitting the first signal to the memory controller. Accordingly, the usage of the simulator is flexible.
Abstract:
A storage apparatus is provided. The controller of the storage apparatus includes an error correction module and a data disordering module. The error correction module is configured to perform an error correction procedure for a data packet to be written into a flash memory module of the storage apparatus for generating sequence data codes containing the data packet and corresponding error correcting codes, wherein the data packet includes a data area recording data to be written and a spare area recording data related to the data packet. The data disordering module is configured to convert the sequence data codes into non-sequence data codes, wherein the data of the data area and the spare area and error correcting codes are dispersed in the non-sequence data codes. Accordingly, it is possible to effectively increase the safety of the data packet.
Abstract:
A NAND flash memory unit, an operating method and a reading method are provided. The NAND flash memory unit includes a plurality of gate layers, a tunnel layer, a charge trapping layer, a conductor layer and a second dielectric layer. A first dielectric layer is included between two adjacent gate layers among the gate layers. The tunnel layer, the charge trapping layer, the conductor layer, and the second dielectric layer penetrate the gate layers. The charge trapping layer is disposed between the tunnel layer and the gate layers, and the second dielectric layer is disposed between the conductor layer and the tunnel layer. Therefore, an erasing speed may be increased; the charge trapping layer may be repaired; the controllability of the gate layers may be increased.
Abstract:
A data reading method for a rewritable non-volatile memory module is provided. The method includes applying a test voltage to a word line of the rewritable non-volatile memory module to read a plurality of verification bit data. The method also includes calculating a variation of bit data identified as a first status among the verification bit data, obtaining a new read voltage value set based on the variation, and updating a threshold voltage set for the word line with the new read voltage value set. The method further includes using the updated threshold voltage set to read data from a physical page formed by memory cells connected to the word line. Accordingly, storage states of memory cells in the rewritable non-volatile memory module can be identified correctly, thereby preventing data stored in the memory cells from losing.