Abstract:
Semiconductor devices comprise at least one integrated circuit layer, at least one conductive trace and an insulative material adjacent at least a portion of the at least one conductive trace. At least one interconnect structure extends through a portion of the at least one conductive trace and a portion of the insulative material, the at least one interconnect structure comprising a transverse cross-sectional dimension through the at least one conductive trace which differs from a transverse cross-sectional dimension through the insulative material. Methods of forming semiconductor devices comprising at least one interconnect structure are also disclosed.
Abstract:
An apparatus and process operate to impose sonic pressure upon a spin-on film liquid mass that exhibits a liquid topography and in a solvent vapor overpressure to alter the liquid topography. Other apparatus and processes are disclosed.
Abstract:
Some embodiments include methods for treating surfaces. Beads and/or other insolubles may be dispersed within a liquid carrier to form a dispersion. A transfer layer may be formed across a surface. The dispersion may be directed toward the transfer layer, and the insolubles may impact the transfer layer. The impacting may generate force in the transfer layer, and such force may be transferred through the transfer layer to the surface. The surface may be a surface of a semiconductor substrate, and the force may be utilized to sweep contaminants from the semiconductor substrate surface. The transfer layer may be a liquid, and in some embodiments may be a cleaning solution.
Abstract:
Some embodiments include methods for treating surfaces. Beads and/or other insolubles may be dispersed within a liquid carrier to form a dispersion. A transfer layer may be formed across a surface. The dispersion may be directed toward the transfer layer, and the insolubles may impact the transfer layer. The impacting may generate force in the transfer layer, and such force may be transferred through the transfer layer to the surface. The surface may be a surface of a semiconductor substrate, and the force may be utilized to sweep contaminants from the semiconductor substrate surface. The transfer layer may be a liquid, and in some embodiments may be a cleaning solution.
Abstract:
Some embodiments include devices that contain bundles of CNTs. An undulating topography extends over the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is directly over the CNTs, with the material being a plurality of particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width. Some embodiments include methods in which a plurality of crossed carbon nanotubes are formed over a semiconductor substrate. The CNTs form an undulating upper topography extending across the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is deposited over the CNTs, with the material being deposited as particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width.
Abstract:
Electronic apparatus, systems, and methods include a semiconductor layer bonded to a bulk region of a wafer or a substrate, in which the semiconductor layer can be bonded to the bulk region using electromagnetic radiation. Additional apparatus, systems, and methods are disclosed.
Abstract:
Some embodiments include methods of treating surfaces with aerosol particles. The aerosol particles may be formed as liquid particles, and then passed through a chamber under conditions which change the elasticity of the particles prior to impacting a surface with the particles. The change in elasticity may be an increase in the elasticity, or a decrease in the elasticity. The change in elasticity may be accomplished by causing a phase change of one or more components of the aerosol particles such as, for example, by at least partially freezing the aerosol particles, or by forming entrained bubbles within the aerosol particles. Some embodiments include apparatuses that may be utilized during treatment of surfaces with aerosol particles.
Abstract:
Some embodiments include devices that contain bundles of CNTs. An undulating topography extends over the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is directly over the CNTs, with the material being a plurality of particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width. Some embodiments include methods in which a plurality of crossed carbon nanotubes are formed over a semiconductor substrate. The CNTs form an undulating upper topography extending across the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is deposited over the CNTs, with the material being deposited as particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width.
Abstract:
Semiconductor devices comprise at least one integrated circuit layer, at least one conductive trace and an insulative material adjacent at least a portion of the at least one conductive trace. At least one interconnect structure extends through a portion of the at least one conductive trace and a portion of the insulative material, the at least one interconnect structure comprising a transverse cross-sectional dimension through the at least one conductive trace which differs from a transverse cross-sectional dimension through the insulative material. Methods of forming semiconductor devices comprising at least one interconnect structure are also disclosed.
Abstract:
An apparatus and process operate to impose sonic pressure upon a spin-on film liquid mass that exhibits a liquid topography and in a solvent vapor overpressure to alter the liquid topography. Other apparatus and processes are disclosed.