摘要:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate comprising an isolation region surrounding and separating a P-active region and an N-active region; a P-metal gate electrode over the P-active region and extending over the isolation region, wherein the P-metal gate electrode comprises a P-work function metal and an oxygen-containing TiN layer between the P-work function metal and substrate; and an N-metal gate electrode over the N-active region and extending over the isolation region, wherein the N-metal gate electrode comprises an N-work function metal and a nitrogen-rich TiN layer between the N-work function metal and substrate, wherein the nitrogen-rich TiN layer connects to the oxygen-containing TiN layer over the isolation region.
摘要:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate, an N-metal gate electrode, and a P-metal gate electrode. The substrate comprises an isolation region surrounding a P-active region and an N-active region. The N-metal gate electrode comprises a first metal composition over the N-active region. The P-metal gate electrode comprises a bulk portion over the P-active region and an endcap portion over the isolation region. The endcap portion comprises the first metal composition and the bulk portion comprises a second metal composition different from the first metal composition.
摘要:
The disclosure relates to spacer structures of a semiconductor device. An exemplary structure for a semiconductor device comprises a substrate having a first active region and a second active region; a plurality of first gate electrodes having a gate pitch over the first active region, wherein each first gate electrode has a first width; a plurality of first spacers adjoining the plurality of first gate electrodes, wherein each first spacer has a third width; a plurality of second gate electrodes having the same gate pitch as the plurality of first gate electrodes over the second active region, wherein each second gate electrode has a second width greater than the first width; and a plurality of second spacers adjoining the plurality of second gate electrodes, wherein each second spacer has a fourth width less than the third width.
摘要:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate comprising a P-active region, an N-active region, and an isolation region interposed between the P- and N-active regions; a P-metal gate electrode over the P-active region, that extends over the isolation region; and an N-metal gate electrode having a first width over the N-active region, that extends over the isolation region and has a contact section in the isolation region electrically contacting the P-metal gate electrode, wherein the contact section has a second width greater than the first width.
摘要:
A method includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface spaced from the first surface by less than the step height, forming a gate structure, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface spaced from the first surface by less than the step height, a gate structure, and a contact engaging the gate structure over the recess.
摘要:
The applications discloses a semiconductor device comprising a substrate having a first active region, a second active region, and an isolation region having a first width interposed between the first and second active regions; a P-metal gate electrode over the first active region and extending over at least ⅔ of the first width of the isolation region; and an N-metal gate electrode over the second active region and extending over no more than ⅓ of the first width. The N-metal gate electrode is electrically connected to the P-metal gate electrode over the isolation region.
摘要:
A device includes a drain, a source, and a gate stack. The gate stack has a gate dielectric layer, a gate conductive layer immediately on top of the gate dielectric layer, and first gate and a second gate layer that are immediately on top of the gate conductive layer. The first gate layer has a first resistance higher than a second resistance of the second gate layer. The second gate layer is conductive, is electrically coupled with the gate conductive layer, and has a contact terminal configured to serve as a gate contact terminal for the device. Fabrication methods of the gate stack are also disclosed.
摘要:
A method includes forming a PMOS device. The method includes forming a gate dielectric layer over a semiconductor substrate and in a PMOS region, forming a first metal-containing layer over the gate dielectric layer and in the PMOS region, performing a treatment on the first metal-containing layer in the PMOS region using an oxygen-containing process gas, and forming a second metal-containing layer over the first metal-containing layer and in the PMOS region. The second metal-containing layer has a work function lower than a mid-gap work function of silicon. The first metal-containing layer and the second metal-containing layer form a gate of the PMOS device.
摘要:
An offset gate semiconductor device includes a substrate and an isolation feature formed in the substrate. An active region is formed in the substrate substantially adjacent to the isolation feature. An interface layer is formed on the substrate over the isolation feature and the active region. A polysilicon layer is formed on the interface layer over the isolation feature and the active region. A trench being formed in the polysilicon layer over the isolation feature. The trench extending to the interface layer. A fill layer is formed to line the trench and a metal gate formed in the trench.
摘要:
A method of forming a semiconductor device includes forming a gate stack over a substrate, forming an amorphized region in the substrate adjacent to an edge of the gate stack, forming a stress film over the substrate, performing a process to form a dislocation with a pinchoff point in the substrate, removing at least a portion of the dislocation to form a recess cavity with a tip in the substrate, and forming a source/drain feature in the recess cavity.