Abstract:
A semiconductor package includes a bottom substrate and a top substrate space apart from the bottom substrate such that the bottom substrate and the top substrate define a gap therebetween. A logic die and a memory die are mounted on a top surface of the bottom substrate in a side-by-side fashion. The logic die may have a thickness not less than 125 micrometers. A connection structure is disposed between the bottom substrate and the top substrate around the logic die and the memory die to electrically connect the bottom substrate with the top substrate. A sealing resin fills in the gap between the bottom substrate and the top substrate and sealing the logic die, the memory die, and the connection structure in the gap.
Abstract:
A semiconductor package includes a bottom substrate and a top substrate space apart from the bottom substrate such that the bottom substrate and the top substrate define a gap therebetween. A logic die is mounted on a top surface of the bottom substrate. The logic die has a thickness of 125-350 micrometers. A plurality of copper cored solder balls is disposed between the bottom substrate and the top substrate around the logic die to electrically connect the bottom substrate with the top substrate. A sealing resin fills into the gap between the bottom substrate and the top substrate and sealing the logic die and the plurality of copper cored solder balls in the gap.
Abstract:
A semiconductor package includes a first substrate, a second substrate, a composite solder ball and a first semiconductor component. The composite solder ball includes a core, an encapsulating layer and a barrier layer. The composite solder ball is disposed between the first substrate and the second substrate for electrically connecting the first substrate and the second substrate. The barrier layer is disposed between the core and the encapsulating layer. Wherein a melting point of the barrier layer is higher than a melting point of the core, the melting point of the core is higher than a melting point of the encapsulating layer. The first semiconductor component is disposed between the first substrate and the second substrate.
Abstract:
A semiconductor package with reduced warpage problem is provided, including: a circuit board, having opposing first and second surfaces; a semiconductor chip, formed over a center portion of the first surface of the circuit board, having a first cross sectional dimension; a spacer, formed over a center portion of the semiconductor chip, having a second cross sectional dimension less than that of the first cross sectional dimension; an encapsulant layer, formed over the circuit board, covering the semiconductor chip and surrounding the spacer; a heat spreading layer, formed over the encapsulant layer and the spacer; and a plurality of solder balls, formed over the second surface of the circuit board, wherein a ratio between the first cross sectional dimension and the second cross sectional dimension is about 1:2-1:6.
Abstract:
A semiconductor package includes a substrate, a first electronic component, a film and a package body. The first electronic component is disposed on the substrate and has an upper surface. The film is disposed on the upper surface of the first electronic component. The package body encapsulates the first electronic component and the film.
Abstract:
A manufacturing method of a semiconductor package includes the follow steps. Firstly, a carrier is provided. Then, a package substrate is formed. Then, a first electronic component is disposed above the second conductive layer of the package substrate. Then, a second package body encapsulating the first electronic component and the second conductive layer is formed. Then, the carrier is carried. Wherein in the step of forming the package substrate includes a step of forming a first conductive layer on the carrier, a step of forming a first pillar layer on the first conductive layer, a step of forming a first package body encapsulating the first conductive layer and the first pillar layer and a step of forming a second conductive layer on the first pillar layer.
Abstract:
A graphics processing unit (GPU) renders graphical objects into a group of pixels and stores the pixels in an on-chip buffer on the same chip as the GPU. Each pixel has an alpha value that indicates transparency of the pixel. The GPU reads the alpha value of each pixel from the on-chip buffer. According to alpha values of the group of pixels, the GPU generates an alpha hint in the system memory for the group of pixels. The alpha hint represents an aggregate of the alpha values of the group of pixels. The GPU then stores the group of pixels into a frame buffer in the system memory.
Abstract:
A graphic processing circuit with binning rendering and associated pre-depth processing method is provided. Firstly, a first depth data of a first primitive corresponding to a specified tile is received. Then, the pre-depth data corresponding to the specified tile is read from a pre-Z buffer. If the first depth data is not larger than the pre-depth data and the first primitive is an opaque primitive, the pre-depth data is updated with the first depth data. If the first depth data is not larger than the pre-depth data and the first primitive is a translucent primitive, an uncertainty ordering range is defined according to the first depth data and the pre-depth data, and the pre-depth data is updated with the uncertainty ordering range.
Abstract:
A system, method, and computer program product are provided for reducing GPU load by programmatically controlling shading rates in computer graphics. GPU load may be reduced by applying different shading rates to different screen regions. By reading the depth buffer of previous frames and performing image processing, thresholds may be calculated that control the shading rates. The approach may be run on any platform that supports VRS hardware and primitive- or image-based VRS. The approach may be applied on a graphics driver installed on a client device, in a firmware layer between hardware and a driver, in a software layer between a driver and an application, or in hardware on the client device. The approach is flexible and adaptable and calculates and sets the variable rate shading based on the graphics generated by an application without requiring the application developer to manually set variable rate shading.
Abstract:
A semiconductor device includes a bottom package, a top package stacked on the bottom package, and an interposer disposed between the bottom package and the top package. The top package is electrically connected to the interposer through a plurality of peripheral solder balls. At least a dummy thermal feature is disposed on the interposer and surrounded by the plurality of peripheral solder balls.