Abstract:
The present invention relates to a flexible thermoelectric device and a manufacturing method thereof, and a thermoelectric material is formed on a mesh type substrate made of a glass fabric, and the like. According to the present invention, since the thermoelectric material is supported by a mesh type substrate without a substrate made of alumina, and the like, the thermoelectric device has a high flexibility and a light weight, and thermal loss is minimized by the substrate to maximize thermoelectric efficiency.
Abstract:
This invention relates to a method and board for forming a graphene layer, and more particularly, to a method of forming a high-quality graphene layer using high pressure annealing and to a board used therein. The method of forming the graphene layer includes forming a reaction barrier layer on a substrate layer, forming a metal catalyst layer which functions as a catalyst for forming the graphene layer on the reaction barrier layer, subjecting a board including a stack of the layers to high pressure annealing, and growing the graphene layer on the metal catalyst layer. This board is subjected to high pressure annealing before growth of the graphene layer, and the reaction barrier layer is formed using a material having high adhesion energy to the metal catalyst layer so as to suppress migration of metal catalyst atoms.
Abstract:
Disclosed are a capacitor for DRAM, a DRAM including the same, and a method of fabricating the same. The DRAM capacitor according to an embodiment may include a first electrode of the DRAM; a second electrode spaced apart from the first electrode; and a dielectric layer including a HfZrO film disposed between the first electrode and the second electrode. The HfZrO film may have an intermediate state corresponding to a phase transition region between a first state in which a tetragonal crystalline phase with anti-ferroelectricity property or a tetragonal crystalline phase is dominant, and a second state in which the orthorhombic crystalline phase with anti-ferroelectricity property or the orthorhombic crystalline phase is dominant. The HfZrO film may include both of the tetragonal crystalline phase and the orthorhombic crystalline phase. The HfZrO film maintains an intermediate state corresponding to the phase transition region within the operating voltage range of the capacitor.
Abstract:
A charge trapping non-volatile organic memory device according to the present invention has a structure in which an organic matter-based blocking layer, a trapping layer, and a tunneling layer are sequentially positioned between a gate and an organic semiconductor layer positioned on an insulating substrate, the trapping layer including a metal oxide and a polymer, and has an organic-inorganic composite film in which the metal oxide is dispersed in a polymer matrix in units of atoms.
Abstract:
Provided are methods of sealing open pores of a surface of a porous dielectric material using an initiated chemical vapor deposition (iCVD) process. In one example method of sealing open pores, since the polymer thin film having a significantly thin thickness may be formed by a solvent-free vapor deposition method without plasma treatment, it is possible to minimize deterioration of characteristics of the dielectric material vulnerable to plasma and a chemical solution.
Abstract:
A method of forming a high-quality graphene layer including forming a board layer; forming a stress reduction layer on the board layer; forming a metal catalyst layer on the stress reduction layer, the metal catalyst layer functioning as a catalyst for forming the graphene layer; and growing a graphene layer on the metal catalyst layer. The stress reduction layer reduces the stress of the metal thin film, thus, improving crystallinity and surface roughness of the metal thin film, and thereby effectively forming a high-quality graphene layer.
Abstract:
This disclosure relates to a method of manufacturing n-doped graphene and an electrical component using ammonium fluoride (NH4F), and to graphene and an electrical component thereby. An example method of manufacturing n-doped graphene includes (a) preparing graphene and ammonium fluoride (NH4F); and (b) exposing the graphene to the ammonium fluoride (NH4F), wherein through (b), a fluorine layer is formed on part or all of upper and lower surfaces of a graphene layer, and ammonium ions are physisorbed to part or all of the upper and lower surfaces of the graphene layer or defects between carbon atoms of the graphene layer, thereby maintaining or further improving superior electrical properties of graphene including charge mobility while performing n-doping of graphene.
Abstract:
This invention relates to a method and board for forming a graphene layer, and more particularly, to a method of forming a high-quality graphene layer using high pressure annealing and to a board used therein. The method of forming the graphene layer includes forming a reaction barrier layer on a substrate layer, forming a metal catalyst layer which functions as a catalyst for forming the graphene layer on the reaction barrier layer, subjecting a board including a stack of the layers to high pressure annealing, and growing the graphene layer on the metal catalyst layer. This board is subjected to high pressure annealing before growth of the graphene layer, and the reaction barrier layer is formed using a material having high adhesion energy to the metal catalyst layer so as to suppress migration of metal catalyst atoms.
Abstract:
This invention relates to a board and method for forming a graphene layer, and more particularly, to a board for use in forming a graphene layer, which has a structure able to improve properties of the graphene layer formed thereon, and to a method of forming a high-quality graphene layer using the same. The board of the invention includes a board layer, a metal catalyst layer formed on the board layer and functioning as a catalyst for forming the graphene layer, and a stress reduction layer disposed between the board layer and the metal catalyst layer so as to reduce stress of the metal catalyst layer, wherein the stress reduction layer able to reduce stress of the metal thin film is provided, thus improving crystallinity and surface roughness of the metal thin film, thereby effectively forming a high-quality graphene layer.
Abstract:
Provided are a method of locally sealing only pores present in a surface part of a porous dielectric material by forming a polymer thin film through an initiated chemical vapor deposition (iCVD) method using an initiator, and a method of minimizing an increase in a dielectric constant induced therefrom.