Abstract:
A circuit includes a first field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal; and a second field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal. The second field effect transistor and the first field effect transistor are of the same type, i.e., both re-channel transistors or both p-channel transistors. The second drain-source terminal of the first field effect transistor is coupled to the first drain-source terminal of the second field effect transistor; and the gate of the second field effect transistor is coupled to the first drain-source terminal of the second field effect transistor. The resulting three-terminal device can be substituted for a single field effect transistor that would otherwise suffer breakdown under proposed operating conditions.
Abstract:
A hybrid integrated circuit device includes a semiconductor-on-insulator substrate having a base substrate, a semiconductor layer and a dielectric layer disposed therebetween, the base substrate being reduced in thickness. First devices are formed in the semiconductor layer, the first devices being connected to first metallizations on a first side of the dielectric layer. Second devices are formed in the base substrate, the second devices being connected to second metallizations formed on a second side of the dielectric layer opposite the first side. A through via connection is configured to connect the first metallizations to the second metallizations through the dielectric layer. Pixel circuits and methods are also disclosed.
Abstract:
A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry.
Abstract:
A method for forming a semiconductor device includes forming a dielectric layer on a first substrate and wafer bonding the dielectric layer of the first substrate to a second substrate including SiC with a passivating layer formed on the SiC. A portion of the first substrate is removed from a side opposite the dielectric layer. The dielectric layer is patterned to form a gate dielectric for a field effect transistor formed on the second substrate.
Abstract:
An InxGa1-xAs interlayer is provided between a III-V base and an intrinsic amorphous semiconductor layer of a heterojunction III-V solar cell structure. Improved surface passivation and open circuit voltage may be obtained through the incorporation of the interlayer within the structure.
Abstract translation:在III-V基极和异质结III-V族太阳能电池结构的本征非晶半导体层之间提供In x Ga 1-x As夹层。 可以通过在结构内并入中间层来获得改进的表面钝化和开路电压。
Abstract:
A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry.
Abstract:
Portions of a top compound semiconductor layer are recessed employing a gate electrode as an etch mask to form a source trench and a drain trench. A low temperature epitaxy process is employed to deposit a semiconductor material including at least one elemental semiconductor material in the source trench and the drain trench. Metallization is performed on physically exposed surfaces of the elemental semiconductor material portions in the source trench and the drain trench by depositing a metal and inducing interaction with the metal and the at least one elemental semiconductor material. A metal semiconductor alloy of the metal and the at least one elemental semiconductor material can be performed at a temperature lower than 600° C. to provide a high electron mobility transistor with a well-defined device profile and reliable metallization contacts.
Abstract:
High resolution active matrix structures are fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed using a semiconductor-on-insulator substrate. The substrate is thinned using a layer transfer technique or chemical/mechanical processing. Driver transistors are formed on the semiconductor layer of the substrate along with additional circuits that provide other functions such as computing or sensing. Contacts to passive devices such as organic light emitting diodes may be provided by heavily doped regions formed in the handle layer of the substrate and then isolated. A gate dielectric layer may be formed on the semiconductor layer, which functions as a channel layer, or the insulator layer of the substrate may be employed as a gate dielectric layer.
Abstract:
High resolution active matrix structures are fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed using a semiconductor-on-insulator substrate. The substrate is thinned using a layer transfer technique or chemical/mechanical processing. Driver transistors are formed on the semiconductor layer of the substrate along with additional circuits that provide other functions such as computing or sensing. Contacts to passive devices such as organic light emitting diodes may be provided by heavily doped regions formed in the handle layer of the substrate and then isolated. A gate dielectric layer may be formed on the semiconductor layer, which functions as a channel layer, or the insulator layer of the substrate may be employed as a gate dielectric layer.
Abstract:
A pixel circuit for an active matrix organic light-emitting diode display system includes a first input node, a second input node, first power supply node, a second power supply node, a triode switch circuit, a storage capacitor, an organic light emitting diode, and a resistive element. The triode switch circuit is connected to the first and second input nodes. The storage capacitor is connected between an output of the triode switch circuit and the second power supply node. The organic light-emitting diode is connected between the output of the triode switch circuit and the second power supply node. The first resistive element is connected between the output of the triode switch circuit and the first power supply node.