Abstract:
An inspection apparatus capable of facilitating reduction in cost of the apparatus is provided. The inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held on a movable stage in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The inspection apparatus further includes: a linear motor that drives the movable stage; and a Helmholtz coil that causes a magnetic field for canceling a magnetic field caused by the linear motor when the movable stage is driven.
Abstract:
A surface processing apparatus is an apparatus which performs surface processing on an inspection object 20 by irradiating the inspection object with an electron beam. A surface processing apparatus includes: an electron source 10 (including lens system that controls beam shape of electron beam) which generates an electron beam; a stage 30 on which an inspection object 20 to be irradiated with the electron beam is set; and an optical microscope 110 for checking a position to be irradiated with the electron beam. The current value of the electron beam which irradiates the inspection object 20 is set at 10 nA to 100 A.
Abstract:
An inspection apparatus capable of facilitating reduction in cost of the apparatus is provided. The inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held on a movable stage in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The inspection apparatus further includes: a linear motor that drives the movable stage; and a Helmholtz coil that causes a magnetic field for canceling a magnetic field caused by the linear motor when the movable stage is driven.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.
Abstract:
Provided is a method of adjusting an electron-beam irradiated area in an electron beam irradiation apparatus that deflects an electron beam with a deflector to irradiate an object with the electron beam, the method including: emitting an electron beam while changing an irradiation position on an adjustment plate by controlling the deflector in accordance with an electron beam irradiation recipe, the adjustment plate detecting a current corresponding to the emitted electron beam; acquiring a current value detected from the adjustment plate; forming image data corresponding to the acquired current value; determining whether the electron-beam irradiated area is appropriate based on the formed image data; and updating the electron beam irradiation recipe when the electron-beam irradiated area is determined not to be appropriate.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.
Abstract:
An inspection system includes a primary optical system configured to irradiate a charged particle or an electromagnetic wave as a beam, a movable unit configured to hold an inspection target and move the target through a position where the beam is irradiated, and a TDI sensor configured to integrate an amount of secondary charged particles in a predetermined direction to sequentially transfer the integrated amount. The secondary charged particles are obtained by irradiating the beam onto the target while moving the movable unit in the predetermined direction. The inspection system further includes a prevention module configured to prevent an arrival of the beam at the target side or an arrival of the secondary charged particles at the TDI sensor during a time period from one transfer to the following transfer after the elapse of a predetermined length of time from the one transfer and until the following transfer.