Abstract:
A communication device is configured to encode information bits using one or more forward error correction (FEC) codes and/or error correction codes (ECCs) to generate different codewords (e.g., codeword groups having different lengths, based on different code rates, etc.). The device generates a combined codeword using different sized codewords (e.g., long, medium, and short) by filling fills long codewords completely if possible, then filling medium codewords completely if possible with the remaining message bits (if any), and filling short codewords completely if possible plus another additional short codeword with the remaining message bits (if any). If the total number of short (or medium and short) codeword parity bits is greater than or equal to the number of medium (or long) codeword parity bits, then the device increments the number of medium (or long) codewords by one and setting the number of short (or medium and short) codewords to zero.
Abstract:
A communication device includes a communication interface and a processor configured to generate, transmit, receive, and process signals. The communication device generates orthogonal frequency division multiplexing (OFDM) frame(s) that include a two-dimensional (2D) start burst marker (BM), a data payload, and a 2D stop BM, and transmits the OFDM frame(s) to another communication device. Alternatively, the communication device receives OFDM frame(s) that include a 2D start BM and a 2D stop BM, and then identifies a data payload within those OFDM frame(s) based on the 2D start burst marker and a 2D stop BM. The 2D start and stop BMs are based on predetermined sequences having particular formats based on corresponding 2D sub-carrier and OFDM/A frame based structure. A receiver communication device then detects the 2D start BM and 2D stop BM within the received OFDM frame(s) based on knowledge of these predetermined sequences and particular formats.
Abstract:
A communication device (e.g., a cable modem (CM)) includes a digital to analog converter (DAC) and a power amplifier (PA) that generate a signal to be transmitting via a communication interface to another communication device (e.g., cable modem termination system (CMTS)). The CM includes diagnostic analyzer that samples the signal based on a fullband sample capture corresponding to a full bandwidth and/or a subset (e.g., narrowband) sample capture to generate a fullband and/or subset signal capture (e.g., of an upstream (US) communication channel between the CM and the CMTS). The diagnostic analyzer can be configured to generate sample captures of the signal based on any desired parameter(s), condition(s), and/or trigger(s). The CM then transmits the signal to the CMTS and the fullband and/or subset signal capture to the CMTS and/or a proactive network maintenance (PNM) communication device to determine at least one characteristic associated with performance of the US communication channel.
Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
A device implements orthogonal frequency division multiplexing (OFDM) techniques. In particular, the device includes a frequency interleaver and/or de-interleaver for OFDM modulation. The frequency interleaver provides random frequency interleaving for the symbols transmitted by OFDM modulation. The frequency de-interleaver provides random frequency de-interleaving for the symbols received by OFDM demodulation.
Abstract:
A communication device is configured to communicate coded information to other communication device(s). The communication device uses NCPs to indicate locations of codewords within signal(s) transmitted to the other communication device(s). The communication device is configured to encode NCP(s) using an FEC code to generate coded NCP(s) and also to encode the NCP(s) using a cyclic redundancy check (CRC) code to generate NCP CRC bits. The communication device is also configured to encode the NCP CRC bits using the FEC code to generate coded NCP CRC bits. The communication device is then configured to generate OFDM or OFDMA symbol(s) include the coded NCP(s) and the coded NCP CRC bits to indicate beginnings of codeword(s) within at least one of the OFDM symbol(s) and/or additional OFDM symbol(s). The communication device is also configured to transmit the OFDM or OFDMA symbols to another communication device via a communication interface of the communication device.
Abstract:
A communication device is configured to encode information bits using one or more forward error correction (FEC) codes and/or error correction codes (ECCs) to generate different codewords (e.g., codeword groups having different lengths, based on different code rates, etc.). The device generates a combined codeword using different sized codewords (e.g., long, medium, and short) by filling fills long codewords completely if possible, then filling medium codewords completely if possible with the remaining message bits (if any), and filling short codewords completely if possible plus another additional short codeword with the remaining message bits (if any). If the total number of short (or medium and short) codeword parity bits is greater than or equal to the number of medium (or long) codeword parity bits, then the device increments the number of medium (or long) codewords by one and setting the number of short (or medium and short) codewords to zero.
Abstract:
A communication device (alternatively, device) includes a processor configured to support communications with other communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other communication device(s) and to generate and process signals for such communications. A device directs an analog to digital converter (ADC) to perform a sample capture of a communication channel and processes that sample capture to generate a detected power. The device performs an integrate-and-dump (I&D) operation on the detected power over at least one time period to generate an integrated power and then generates an integrated power histogram of the communication channel that includes the integrated power. This integrated power histogram characterizes noise generated by the device, noise entering the device, noise associated with the communication channel, etc.
Abstract:
A device implements orthogonal frequency division multiplexing (OFDM) techniques. In particular, the device includes a frequency interleaver and/or de-interleaver for OFDM modulation. The frequency interleaver provides random frequency interleaving for the symbols transmitted by OFDM modulation. The frequency de-interleaver provides random frequency de-interleaving for the symbols received by OFDM demodulation.
Abstract:
A communication device is configured to communicate coded information to other communication device(s). The communication device uses NCPs to indicate locations of codewords within signal(s) transmitted to the other communication device(s). The communication device is configured to encode NCP(s) using an FEC code to generate coded NCP(s) and also to encode the NCP(s) using a cyclic redundancy check (CRC) code to generate NCP CRC bits. The communication device is also configured to encode the NCP CRC bits using the FEC code to generate coded NCP CRC bits. The communication device is then configured to generate OFDM or OFDMA symbol(s) include the coded NCP(s) and the coded NCP CRC bits to indicate beginnings of codeword(s) within at least one of the OFDM symbol(s) and/or additional OFDM symbol(s). The communication device is also configured to transmit the OFDM or OFDMA symbols to another communication device via a communication interface of the communication device.