Abstract:
A method for assessing channel performance in a network is provided. The network includes a network controller and nodes. The method preferably includes selecting a channel for assessment and allocating a first probe operation for use with the nodes. The method may also include, in response to the allocating, sending a first probe operation report message from each of the nodes to the network controller. The method may further include using the network controller to select a node to be a channel assessment operation node. In addition, the method may include selecting at least a portion of the nodes to participate in a channel assessment operation signal exchange. The method may also include moving the selected nodes to a different channel to perform a channel assessment operation on the different channel and using the channel assessment operation node to allocate a second probe operation on each of the selected nodes.
Abstract:
Embodiments include systems and methods for enabling a physical layer (PHY) link signaling channel between a network termination modem and a cable modem in a cable network. The PHY link signaling channel is embedded within the same multi-carrier channel as the data and enables PHY link up between the network termination modem and cable modern without involvement of higher layers (e.g., MAC). The PHY link signaling channel can be implemented in the downstream (from the network termination modem to the cable modem(s)) or in the upstream from a cable modem to the network termination modem. Embodiments are applicable to any known cable network, and particularly to cable networks implementing the DOCSIS and EPoC standards.
Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
Systems and methods for increasing preambles are provided. In some aspects, an electronic device configured for use as a node in a home network is provided. The electronic device includes a preamble generator configured to generate an outbound preamble for a data signal. The electronic device also includes a preamble increasing circuit configured to increase a size of the outbound preamble based on a switching signal.
Abstract:
Embodiments include systems and methods for enabling a physical layer (PHY) link signaling channel between a network termination modem and a cable modem in a cable network. The PHY link signaling channel is embedded within the same multi-carrier channel as the data and enables PHY link up between the network termination modem and cable modem without involvement of higher layers (e.g., MAC). The PHY link signaling channel can be implemented in the downstream (from the network termination modem to the cable modem(s)) or in the upstream from a cable modem to the network termination modem. Embodiments are applicable to any known cable network, and particularly to cable networks implementing the DOCSiS and EPoC standards.
Abstract:
A device may include a processor circuit configured to transmit, over a network medium, a request for transmission of a data communication to a first device of a network, and receive, over the network medium, a grant of the request. When the first device is associated with a first security profile, the processor circuit may be configured to encrypt the data communication based at least on a first password associated with the first security profile. When the first device is associated with a second security profile, the processor circuit may be configured to encrypt the data communication based at least on a second password associated with the second security profile. The second password may be associated with a higher password strength than the first password. The processor circuit may be configured to transmit, over the network medium, the encrypted data communication to the first device in response to the grant.
Abstract:
The present disclosure is directed to a system and method for detecting burst noise. The system and method are described in the exemplary context of a cable modem system and can be used in such a system to specifically detect upstream burst noise. Once detected, the system and method can adjust the upstream receiver that receives data corrupted by the upstream burst noise to reduce the potentially deleterious effects that the burst noise can have on, for example, the packet error rate and/or data rate of the upstream receiver.
Abstract:
An example of a method of policing a flow in a home network such as a MoCA network may include calculating a policing period, calculating a first credit parameter, initializing a first usage variable at a beginning of the policing period, receiving a packet at an ingress node, calculating the first usage variable based on a first formula, determining whether the first usage variable is less than or equal to the first credit parameter, and making a reservation request when the first usage variable is less than or equal to the first credit parameter. The reservation request is different from an opportunistic reservation request. Examples of a system and a computer program product having instructions stored in a tangible computer-readable storage medium are also provided.
Abstract:
A communication device includes a media access control (MAC) and a physical layer (PHY) processor and supports multi-profile communications with one or more other communication devices. The PHY processor selects a profile based on one or more characteristics of a communication pathway between the device and the one or more other communication devices. A profile may include operational parameters such as modulation coding set (MCS), forward error correction (FEC) and/or error correction code (ECC), a number of bits per symbol per sub-carrier and/or sub-carrier mapping (e.g., such as based on orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA)), cyclic prefix, channel(s) used in transmission, bit-filling and shortening, unicast and/or multicast transmission, and/or other operational parameters. The PHY processor also may be configured to operate within at least two different operational modes including a first mode of packet aggregation and a second mode of bit-filling and shortening.
Abstract:
A communication device having a Media Access Control (MAC) layer and a physical (PHY) layer may include a first physical channel for transferring at least one packet between the PHY layer and the MAC layer. The communication device may further include a second physical channel for transferring, to a transmitting device, a first table that indicates a number of bits to be loaded onto each of a plurality of tones and a second table that indicates a transmission power for the plurality of tones. The PHY layer may receive the at least one packet from the transmitting device over the plurality of tones and may transfer the at least one packet to the MAC layer via the first physical channel.