Abstract:
A communication device includes a communication interface, a number of variable power amplifiers (VPAs), and a processor. Some of the VPAs are configured to process analog signals to generate processed analog signals (e.g., each VPA configured to process one of the analog signals to generate one of the processed analog signals based on a respective VPA control signal). A composite VPA processes a summation of the processed analog signals, which are generated by certain of the VPA, to generate a processed composite signal based on a composite VPA control signal. The processor generates the a first, a second, and a composite VPA control signals based, at least in part, on configuration information from another communication device via the communication interface. The processor may be configured to consider other information as well, such as locally generated information (within the communication device), operational history, current operating conditions, etc.
Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
A device may include a processor circuit configured to transmit, over a network medium, a request for transmission of a data communication to a first device of a network, and receive, over the network medium, a grant of the request. When the first device is associated with a first security profile, the processor circuit may be configured to encrypt the data communication based at least on a first password associated with the first security profile. When the first device is associated with a second security profile, the processor circuit may be configured to encrypt the data communication based at least on a second password associated with the second security profile. The second password may be associated with a higher password strength than the first password. The processor circuit may be configured to transmit, over the network medium, the encrypted data communication to the first device in response to the grant.
Abstract:
A communication device (device) includes a processor configured to generate an initial ranging LDPC coded signal based on a first LDPC code and then transmits the initial ranging LDPC coded signal to another device (e.g., via a communication interface) for use by the other device for coarse power and timing adjustment. Then, the processor processes a received transmit opportunity signal to identify a transmit opportunity time period. The processor then generates a fine ranging LDPC coded signal based on a second LDPC code and transmits the fine ranging LDPC coded signal to the other device during the transmit opportunity time period for use by the other device for fine power and timing adjustment. In some instances, the processor may be configured to generate one or more wideband probe signals for transmission to the other device in conjunction with or instead of the fine ranging LDPC coded signals.
Abstract:
A communication device (device) includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other device(s) and to generate and process signals for such communications. The device receives a ranging instruction signal, which includes an initial power and at least one power step, from another device. The device processes the ranging instruction generates a first ranging signal based on the initial power. The device then transmits the first ranging signal to the another device. When a ranging response to the first ranging signal is received from the another device, the device determines that the device is successfully ranged to the another device. Alternatively, when no ranging response is received, the device generates a second ranging signal based on the initial power and the at least one power step and transmit the second ranging signal to the another device.
Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
A communication device having a Media Access Control (MAC) layer and a physical (PHY) layer may include a first physical channel for transferring at least one packet between the PHY layer and the MAC layer. The communication device may further include a second physical channel for transferring, to a transmitting device, a first table that indicates a number of bits to be loaded onto each of a plurality of tones and a second table that indicates a transmission power for the plurality of tones. The PHY layer may receive the at least one packet from the transmitting device over the plurality of tones and may transfer the at least one packet to the MAC layer via the first physical channel.
Abstract:
A device for power efficient networking may include a processor circuit configured to identify a time to enter a low power state. The processor circuit may be further configured to transmit, prior to the identified time, transmission parameters to a network coordinator device for a network of devices, the transmission parameters being associated with a transmission from at least one of the devices to the device. The processor circuit may be further configured to enter the low power state at the identified time. The processor circuit may be further configured to, upon exiting the low power state, receive the transmission from at least one of the devices based at least in part on the transmission parameters. The processor circuit may be further configured to receive the transmission without participating in a node admission process after exiting the low power state.
Abstract:
A network device includes one or more memories and one or more processor circuits coupled to the one or more memories. The one or more processor circuits are configured to cause providing for transmission a request directed to a network controller to change a power state of the network device, receiving a grant from the network controller in response to the request, and changing the power state of the network device in response to receiving the grant. The power state of the network device includes a running power state and a standby power state, where the standby power state includes an active mode and an idle mode. A network controller for granting a request from the network device to change a power state of the network device is also disclosed.
Abstract:
A communication device (device) includes a processor configured to generate an initial ranging LDPC coded signal based on a first LDPC code and then transmits the initial ranging LDPC coded signal to another device (e.g., via a communication interface) for use by the other device for coarse power and timing adjustment. Then, the processor processes a received transmit opportunity signal to identify a transmit opportunity time period. The processor then generates a fine ranging LDPC coded signal based on a second LDPC code and transmits the fine ranging LDPC coded signal to the other device during the transit opportunity time period for use by the other device for fine power and timing adjustment. In some instances, the processor may be configured to generate one or more wideband probe signals for transmission to the other device in conjunction with or instead of the fine ranging LDPC coded signals.