Abstract:
A semiconductor device includes a reception data input terminal configured such that reception data, which is serial data, is input; a transmission data output terminal configured such that transmission data, which is serial data, is output; and a communication part configured to receive the reception data and transmit the transmission data, wherein the communication part includes: a counter; and a synchronization part configured to monitor the transmission data if the semiconductor device is other than a target device set in the reception data, and reset a count by the counter upon detecting a stop bit and a start bit at frame switching in the transmission data.
Abstract:
A system for communicating modulated EHF signals may include a modulation circuit responsive to a bi-level transmit information signal for generating a transmit output signal. The transmit output signal may have an EHF frequency when the transmit information signal is at a first information state and may be suppressed when the transmit information signal is at a second information state. A transmit transducer operatively coupled to the modulation circuit may be responsive to the transmit output signal for converting the transmit output signal into an electromagnetic signal.
Abstract:
Multiple timing reference signals (e.g., clock signals) each cycling at the same frequency are distributed in a fly-by topology to a plurality of memory devices in various embodiments are presented. These multiple clock signals each have a different phase relationship to each other (e.g., quadrature). A first circuit receives a first of these clocks as a first timing reference signal. A second circuit receives a second of these clocks as a second timing reference signal. A plurality of receiver circuits receive signals synchronously with respect to the first timing reference signal and the second timing reference signal, such that a first signal value is resolved using the first timing reference signal and a second signal value is resolved using the second timing reference signal.
Abstract:
In one embodiment, an apparatus may include a de-serializer to convert serial data to parallel data, and a counter to provide an update signal based on a bit count of the serial data. The apparatus may further include a synchronizer to provide a synchronization signal when a target clock signal is synchronized with the update signal. The apparatus may further include an output unit to provide a validation indicator in response to the synchronization signal.
Abstract:
The present invention relates to serial asynchronous transmission of data of fixed length in which a start bit and a stop bit are inserted at the head and tail, respectively, of the data. The insertion of a fixed bit having a predetermined logical value every predetermined number of bits of the data allows an idle state period to be reduced up to the predetermined number of bits plus 1 bit, resulting in considerable improvement in transmission efficiency.
Abstract:
The present invention relates to a LIN receiver having sleep/wake-up functionality, which has an input (LINI) to a LIN bus (LIN), an output (RXDO), terminals for at least one supply voltage (BVDD), and transistors (M1 through M17), the transistors (M1 through M17) being switched to activate the receiver in the recessive state of the LIN bus via a state change on the LIN bus into an active state of the receiver. In particular, the input (LINI) is connected between components of a voltage-to-current converter (SSW), in particular between a first and a second resistors, (R2, R2).
Abstract:
For signals to be transmitted through a signal transmission path constituted by a relay device group for relay for each set of a plurality of channels, a timing adjustment unit is provided in both or one of a receiver-side LSI and a transmitter-side LSI for each set of a plurality of channels transmitted through the relay device group for relay so that the signals can be transmitted with accurate timing. In addition, the timing adjustment unit can adjust the timing for signals transmitted through each relay device group, the timing in one receiver-side LSI in signal transmission through a plurality of relay device groups, and the timing in one-to-many signal transmission in which signals are transmitted from one transmitter-side LSI to a plurality of receiver-side LSIs.
Abstract:
Receiving circuitry having a plurality of amplifiers coupled in series, a first of the amplifiers receiving an input signal and each of the amplifiers outputting an amplified signal; a plurality of comparators each coupled to the output of one of the amplifiers and having an input for receiving the amplified signal; signal identification circuitry coupled to the outputs of the comparators and arranged to determine whether the outputs of the comparators validly represent data; and signal selection circuitry arranged to select the best signal originating from the comparators based on the validity of the outputs of the comparators.
Abstract:
A data receiving apparatus which makes it possible to obtain reliable received data during EOP period and a preceding period, and which makes it possible to receive serial data in a reliable manner. Data receiving apparatus 100 is provided with receiving comparator 102 which has first signal line 101a and second signal line 101b for differential input; NOR circuit 105 that outputs a logical output, as a trigger signal, at the time the first signal and the second signal have changed from out-of-phase to in-phase; and D-FF circuit 107 that retrieves, by means of a trigger signal from NOR circuit 105, and holds an output RCV of receiving comparator 102; wherein selection circuit 108 selects the output of receiving comparator 102, when the first signal of first signal line 101a and the second signal of second signal line 101b are out-of-phase with each other, and outputs, as received data, a value held in D-FF circuit, when the first signal and the second signal have changed from out-of-phase to in-phase.
Abstract:
A method and apparatus for determining the appropriate timing interval for each bit or data symbol in serial data communications. A sending device transmits a predetermined bit sequence, such as a binary pattern corresponding to one byte, either on its own initiative or in response to an action of a receiving device. A microprocessor in the receiving device measures a calibration time interval between the leading edge of a start bit and a subsequent marker transition, either between subsequent data bits or between the final data bit and the stop bit. This measured interval may be mathematically converted to units useful to calibrate a function or device that conducts input/output operations. Optionally, the process may be repeated periodically to compensate for clock rate drift. This invention may be used for autobaud data rate detection, or matching the actual data rate of a remote serial device, and permits accurate communications without precision timing references.