Abstract:
A digital to analog converter (DAC) includes a thermometer coder that generates a plurality of micro-current source analog controls on a frame-by-frame or symbol-by-symbol basis and to process digital inputs from symbols or frames of data based on a thermometer coding to generate a plurality of micro-current source inputs. A plurality of micro-current sources generate a corresponding plurality of micro-current source outputs in response to the plurality of micro-current source inputs, wherein first selected ones of the plurality of micro-current sources are powered-off in response to the plurality of micro-current source analog controls for a first symbol or frame of the plurality of symbols or frames of data. A summing circuit generates an analog output based a sum of the corresponding plurality of micro-current source outputs.
Abstract:
A digital to analog converter (DAC) includes a thermometer coder that processes a digital input based on a thermometer coding, and generates a plurality of micro-current source inputs and a plurality of micro-current source analog controls. A plurality of micro-current sources generate a corresponding plurality of micro-current source outputs in response to the plurality of micro-current source inputs, wherein first selected ones of the plurality of micro-current sources are powered-off in response to the plurality of micro-current source analog controls. A summing circuit generates an analog output based on a sum of the corresponding plurality of micro-current source outputs.
Abstract:
A digital to analog converter (DAC) includes a thermometer coder that processes a digital input based on a thermometer coding, and generates a plurality of micro-current source inputs and a plurality of micro-current source analog controls. A plurality of micro-current sources generate a corresponding plurality of micro-current source outputs in response to the plurality of micro-current source inputs, wherein first selected ones of the plurality of micro-current sources are powered-off in response to the plurality of micro-current source analog controls. A summing circuit generates an analog output based on a sum of the corresponding plurality of micro-current source outputs.
Abstract:
A communication device operates to support communications with one or more other communication devices. The communication device includes a processor and a communication interface to perform various operations including receiving forward error correction (FEC) coded signals from another communication device. The communication device iteratively decodes the FEC coded signals to make estimates of information encoded therein. The communication device then determines an operational error check rate based on error check failure of at least one of the FEC coded signals after performing a predetermined number of decoding iterations (e.g., that is less than a maximum number of decoding iterations performed by the device). The device then determines a signal to noise ratio (SNR) margin of the communication device by applying the operational error check rate to a characterization of the communication device that relates error check rate and SNR.
Abstract:
A transmitter for use in a cable modem termination system includes a data processing module that generates a plurality of OFDM symbols from a data packet. A probe symbol generator generates a probe symbol, as one of a plurality of probe symbol types. The probe symbol is selectively inserted within the plurality of OFDM symbols, at a pre-defined probe symbol interval.
Abstract:
A transmitter for use in a cable modem termination system includes a data processing module that generates a plurality of OFDM symbols from a data packet. A probe symbol generator generates a probe symbol, as one of a plurality of probe symbol types. The probe symbol is selectively inserted within the plurality of OFDM symbols, at a pre-defined probe symbol interval.
Abstract:
A transmitter for use in a cable modem termination system includes a data processing module that generates a plurality of OFDM symbols from a data packet. A probe symbol generator generates a probe symbol, as one of a plurality of probe symbol types. The probe symbol is selectively inserted within the plurality of OFDM symbols, at a pre-defined probe symbol interval.
Abstract:
A transmitter's operation is characterized using components having relatively low cost and low complexity. A device includes comparator(s) that compare a transmitter's analog output to predetermined level(s) to generate count(s) associated with analog output range bin(s). Each of the predetermined levels is associated with a corresponding one of the analog output range bins. A transfer function of the transmitter is generated using the comparison count values associated with the analog output range bin(s). A histogram may be generated from the comparison count values associated with the various analog output range bins. An equalizer is implemented to process data that will be transmitted by the transmitter. The equalizer uses equalizer parameter(s) that are selected based on the characterization of the transmitter (e.g., its transfer function, its histogram, etc.). The equalizer may use default or start up parameters until the transmitter's operation is characterized.
Abstract:
A communication device (e.g., a cable modem (CM)) includes a digital to analog converter (DAC) and a power amplifier (PA) that generate a signal to be transmitting via a communication interface to another communication device (e.g., cable modem termination system (CMTS)). The CM includes diagnostic analyzer that samples the signal based on a fullband sample capture corresponding to a full bandwidth and/or a subset (e.g., narrowband) sample capture to generate a fullband and/or subset signal capture (e.g., of an upstream (US) communication channel between the CM and the CMTS). The diagnostic analyzer can be configured to generate sample captures of the signal based on any desired parameter(s), condition(s), and/or trigger(s). The CM then transmits the signal to the CMTS and the fullband and/or subset signal capture to the CMTS and/or a proactive network maintenance (PNM) communication device to determine at least one characteristic associated with performance of the US communication channel.
Abstract:
A digital to analog converter (DAC) includes a thermometer coder that generates a plurality of micro-current source analog controls on a frame-by-frame or symbol-by-symbol basis and to process digital inputs from symbols or frames of data based on a thermometer coding to generate a plurality of micro-current source inputs. A plurality of micro-current sources generate a corresponding plurality of micro-current source outputs in response to the plurality of micro-current source inputs, wherein first selected ones of the plurality of micro-current sources are powered-off in response to the plurality of micro-current source analog controls for a first symbol or frame of the plurality of symbols or frames of data. A summing circuit generates an analog output based a sum of the corresponding plurality of micro-current source outputs.