摘要:
A device for controlling a fuel evaporative purge system having a solenoid valve arranged in a purge passage, comprises a unit for determining a maximum amount of fuel vapor to be purged, an air flow meter, a unit for calculating a maximum purging ratio of the maximum amount of fuel vapor to an amount of intake air, a unit for setting a purging ratio which is gradually varied during the purging process, and a unit for activating the solenoid valve. In the purging operation, the activating unit drives the valve at a duty-ratio identical to a ratio of the purging ratio to the maximum purging ratio.
摘要:
In the present invention, the exhaust gas from the engine is divided into a first and a second branch exhaust passages after it passes through a three-way reducing and oxidizing catalyst, and the two branch exhaust passages merge into an exhaust gas outlet passage. In the first branch exhaust passage, an oxidizing catalyst is disposed, and in the exhaust gas outlet passage, a denitrating and oxidizing catalyst is disposed. NO.sub.x in the exhaust gas from the engine is all converted to N.sub.2 and NH.sub.3 by the three-way reducing and oxidizing catalyst and a part of the NH.sub.3 generated by the three-way catalyst flows into the first branch exhaust passage and is converted to NO.sub.x again by the oxidizing catalyst. The amount of NO.sub.x produced by the oxidizing catalyst and the amount of NO.sub.x flowing through the second branch exhaust passage is determined by the flow distribution ratio of the first and the second branch exhaust passages. In this invention, the flow ratio is determined in such a manner that the amount of the NO.sub.x produced by the oxidizing catalyst and the amount of the NH.sub.3 passing through the second branch exhaust passage are stoichiometric to produce N.sub.2 and H.sub.2 O. Therefore, when these exhaust gases flow into the denitrating and oxidizing catalyst after they mix with each other in the exhaust gas outlet passage, all the NO.sub.x and the NH.sub.3 are converted to N.sub.2 and H.sub.2 O by the denitrating and oxidizing catalyst without producing any surplus NO.sub.x or NH.sub.3.
摘要:
Disclosed is a technology of diagnosing an exhaust gas purifying apparatus about a fault in its temperature control function of controlling a temperature of an exhaust gas purifying catalyst. The exhaust gas purifying apparatus for an internal combustion engine includes the exhaust gas purifying catalyst, and a temperature control means for controlling the temperature of this exhaust gas purifying catalyst. The exhaust gas purifying apparatus is judged to be faulted, wherein at least one of a state of the temperature control means and a state of the exhaust gas purifying catalyst serves as a parameter.
摘要:
An exhaust gas purifying catalyst, for reducing nitrogen oxides and ammonia in an exhaust gas of an internal combustion engine, in an oxidizing atmosphere, is provided. The exhaust gas purifying catalyst comprises a first catalyst having zeolite carrying platinum and copper thereon. Preferably, the exhaust gas purifying catalyst further comprises a second catalyst having zeolite carrying copper thereon. Preferably, the second catalyst is arranged upstream of the first catalyst, with respect to the exhaust gas flow.
摘要:
In an exhaust gas purification device, a three-way catalyst, an NO.sub.x absorbing-reducing catalyst and an NH.sub.3 adsorbing-denitrating catalyst are disposed in an exhaust gas passage of the internal combustion engine. The engine is provided with direct cylinder injection valves which inject fuel directly into the respective cylinders. A control circuit controls the amount of fuel injected from the injection valve so that the air-fuel ratio of the combustion in the cylinders becomes a lean air-fuel ratio during the normal operation of the engine. Therefore, a lean air-fuel ratio exhaust gas is discharged from the cylinders during the normal operation and NO.sub.x, in the exhaust gas is absorbed by the NO.sub.x absorbing-reducing catalyst. When the amount of NO.sub.x absorbed in the NO.sub.x absorbing-reducing catalyst increases to a predetermined level, the control circuit performs an additional fuel injection during the expansion stroke or exhaust stroke of cylinders in order to adjust the air-fuel ratio of the exhaust gas leaving the cylinders to a rich air-fuel ratio. The rich air-fuel ratio exhaust gas leaving the cylinders flows into the three-way catalyst and NO.sub.x in the exhaust gas is converted into NH.sub.3 at the three-way catalyst. When the rich air-fuel ratio exhaust gas flows through the NO.sub.x absorbing-reducing catalyst, NO.sub.x is released from the NO.sub.x absorbing-reducing catalyst and is reduced to N.sub.2 by NH.sub.3 in the exhaust gas.
摘要:
In an exhaust gas purification device, a No. 1 cylinder of the engine is operated at a rich air-fuel ratio and other cylinders (No. 2 to No. 4) are operated at a lean air-fuel ratio. The exhaust gases from the No. 1 and No. 2 cylinders are mixed with each other to form a rich air-fuel ratio exhaust gas mixture. Further, since the air-fuel ratio of the No. 2 cylinder is lean, the exhaust gas from the No. 2 cylinder contains a relatively large amount of NO.sub.x. This rich air-fuel ratio exhaust gas mixture which contains a relatively large amount of NO.sub.X is supplied to a three-way catalyst. At the three-way catalyst, part of the NO.sub.X in the exhaust gas mixture is converted to NH.sub.3. The exhaust gas mixture flowing out from the three-way catalyst and the lean exhaust gas from the No. 3 and No. 4 flow into a common exhaust gas passage where they mix with each other to form a lean exhaust gas containing NH.sub.3 from the three-way catalyst and NO.sub.X from the No. 3 and No. 4 cylinders. This lean exhaust gas flows into a denitrating catalyst disposed on the common exhaust gas passage in which NO.sub.X in the exhaust gas is reduced by the NH.sub.3.
摘要:
A device for purifying the exhaust gas of an engine having a plurality of cylinders divided into first and second cylinder groups, the first and the second cylinder groups being connected to first and second exhaust passage, respectively, and performing a lean operation, comprises an NH.sub.3 synthesizing catalyst arranged in the first exhaust passage, and an exhaust gas purifying catalyst arranged in an interconnecting passage, which interconnects the first passage downstream of the NH.sub.3 synthesizing catalyst and the second exhaust passage, for purifying the inflowing NO.sub.X and NH.sub.3. An additional engine performing a rich operation is provided and the exhaust gas thereof is fed to the first exhaust gas passage upstream of the NH.sub.3 synthesizing catalyst to make the exhaust gas air-fuel ratio of the exhaust gas flowing into the NH.sub.3 synthesizing catalyst rich, to thereby synthesize NH.sub.3 therein. An amount of NH.sub.3 or NO.sub.X flowing into the exhaust gas purifying catalyst is obtained, and the additional engine is controlled in accordance with the obtained NH.sub.3 or NO.sub.X amount to control the amount of the reducing agent flowing to the exhaust gas purifying catalyst.
摘要:
An engine (1) has first and second cylinder groups (1a) and (1b). The first cylinder group (1a) is connected to a three way (TW) catalyst (8a). The second group (1b) and the TW catalyst (8a) are connected, via an interconnecting duct (13) to an NH.sub.3 adsorbing and oxidizing (NH.sub.3 -AO) catalyst (14a). The first group (1a) performs the rich operation, and the second group (1b) performs the lean operation. In the TW catalyst (8a), NO.sub.x exhausted from the first group (1a) is converted to NH.sub.3, and the NH.sub.3 reduces the NO.sub.x exhausted from the second group (1b) in the NH.sub.3 -AO catalyst (14a). A NO.sub.x occluding and reducing (NO.sub.x -OR) catalyst (11a) is arranged in the exhaust passage between the second group (1b) and the interconnecting duct (13), to thereby suppress the NO.sub.x amount flowing into the NH.sub.3 -AO catalyst (14a).
摘要:
To provide an exhaust gas purifying system for an internal combustion engine capable of executing an optimal regenerative operation by predicting a temperature of an absorbent based on running state information.There are predicted the amount of nitrogen oxides (NO.sub.x) to be absorbed by an absorbent 125 incorporated in a catalyst 124 and the temperature of the absorbent, based on the running state information obtained from a car navigation system 141 or traffic information service receiver 142, and the regenerative operation schedule is determined based on the prediction. Thus, the regenerative operation is conducted at the timing where NO.sub.x has been duly absorbed by the absorbent and the absorbent temperature is lower than a predetermined temperature, so that the leakage of NO.sub.x into the exterior of a vehicle can be restrained.
摘要:
An apparatus for controlling auxiliary equipment driven by an internal combustion engine, which can suppress the deterioration of a specific fuel consumption by controlling the auxiliary equipment based on running environment information provided from a car navigation system or the like. Namely, this apparatus predicts the future maximum output of the internal combustion engine and a running load thereof according to running environment information and vehicle information. Further, if the maximum output is larger than the running load, the auxiliary equipment (for example, a light and an air conditioner) are directly driven by the internal combustion engine. Moreover, surplus energy is stored in an energy storing device. When the maximum output is nearly equal to the running load and that the specific fuel consumption is deteriorated when driving the auxiliary equipments, they are driven by using the energy stored in the energy storing device. Consequently, the deterioration of the fuel consumption ratio due to the operations of the accessories is suppressed.