Abstract:
An electron beam apparatus is provided. The apparatus comprises an e-beam source configured to generate an electron beam, a first part configured to support a substrate, the first part comprising an object table for supporting the substrate, the first part further comprising a short stroke actuator system for actuating the object table relative to the e-beam source, the short stroke actuator system comprising a short stroke forcer. The apparatus further comprises a second part configured to movably support the first part and a long stroke actuator system configured to actuate movement of the first part with respect to the second part, the long stroke actuator system comprising a long stroke forcer, wherein the short stroke forcer and/or the long stroke forcer is configured to be switched off while the electron beam is projected onto the substrate.
Abstract:
A support for a movable element includes a stator element, a gravity compensator field inducing element mounted on the stator element, the gravity compensator field inducing element configured to apply a translational force to the movable element by controlling a magnetic field in a gap between the stator element and the movable element, and a plurality of torque compensator field inducing elements mounted on the stator element, the torque compensator field inducing elements configured to apply a torque to the movable element by controlling a magnetic field in the gap between the stator element and the movable element, the torque being about a first axis substantially perpendicular to the direction of the translational force applied by the gravity compensator field inducing element.
Abstract:
An actuator to displace, for example a mirror, provides movement with at least two degrees of freedom by varying the currents in two electromagnets. A moving part includes a permanent magnet with a magnetic face constrained to move over a working area lying substantially in a first plane perpendicular to a direction of magnetization of the magnet. The electromagnets have pole faces lying substantially in a second plane closely parallel to the first plane, each pole face substantially filling a quadrant of the area traversed by the face of the moving magnet. An optical position sensor may direct a beam of radiation at the moving magnet through a central space between the electromagnets. The sizes of facets in a pupil mirror device may be made smaller in a peripheral region, but larger in a central region, thereby relaxing focusing requirements.
Abstract:
A lithographic apparatus comprises a system. The system comprises a first part, a second part and an energy absorbing element. The second part is configured to move relatively to the first part. The system has a gap located between the first part and the second part during an operation mode of the system. The energy absorbing element is for absorbing energy between the first part and the second part when the first part and the second part crash onto each other in a failure mode of the system. The energy absorbing element is outside the gap.
Abstract:
An exposure apparatus including a projection system configured to project a plurality of radiation beams onto a target; a movable frame that is at least rotatable around an axis; and an actuator system configured to displace the movable frame to an axis away from an axis corresponding to the geometric center of the movable frame and to cause the frame to rotate around an axis through the center of mass of the frame.
Abstract:
Systems and methods for cooling an objective lens of a charged-particle beam system are disclosed. According to certain embodiments, the method for cooling an objective lens of a charged-particle beam system comprises receiving a fluid via a fluid input port of a bobbin, circulating the fluid that absorbs heat generated by a plurality of electromagnetic coils of the objective lens, via a plurality of channels distributed in the bobbin, and dispensing the fluid circulated by the plurality of channels via a fluid output port of the bobbin. The bobbin may further comprise a bottom flange proximal to a wafer and a top flange distal from the wafer. The bobbin having the plurality of channels may comprise an additively manufactured monolithic structure.
Abstract:
A lithographic apparatus comprises a system. The system comprises a first part, a second part and an energy absorbing element. The second part is configured to move relatively to the first part. The system has a gap located between the first part and the second part during an operation mode of the system. The energy absorbing element is for absorbing energy between the first part and the second part when the first part and the second part crash onto each other in a failure mode of the system. The energy absorbing element is outside the gap.
Abstract:
A lithographic apparatus includes an actuator for producing a force in a first direction between a first and a second part including a first magnet assembly and a second magnet assembly each attached opposite to each other to the first part of the apparatus, the first magnet assembly including a first main magnet system and a first outer subsidiary magnet system, and the second magnet assembly including a second main magnet system and a second outer subsidiary magnet system, the first and second main magnet system defining a space between them in a second direction perpendicular to the first direction. The actuator includes a coil attached to the second part. The distance between the first outer subsidiary magnet system and the second outer subsidiary magnet system in the second direction is substantially zero.
Abstract:
A reluctance actuator assembly comprising a reluctance actuator, a flux sensor to measure a magnetic flux in a gap of the reluctance actuator, and a flux amplifier to drive an actuator coil of the reluctance actuator based on a flux set point and the flux measured by the flux sensor. A method comprising providing to the flux amplifier a flux setpoint, the flux setpoint comprising a time constant component and a sinusoidally varying component at an excitation frequency, measuring a force generated by the reluctance actuator in response to the flux setpoint, and calibrating the reluctance actuator assembly from the measured force.
Abstract:
Systems and methods for cooling an objective lens of a charged-particle beam system are disclosed. According to certain embodiments, the method for cooling an objective lens of a charged-particle beam system comprises receiving a fluid via a fluid input port of a bobbin, circulating the fluid that absorbs heat generated by a plurality of electromagnetic coils of the objective lens, via a plurality of channels distributed in the bobbin, and dispensing the fluid circulated by the plurality of channels via a fluid output port of the bobbin. The bobbin may further comprise a bottom flange proximal to a wafer and a top flange distal from the wafer. The bobbin having the plurality of channels may comprise an additively manufactured monolithic structure.