Abstract:
A method of manufacturing a nozzle for a droplet generator for a laser-produced plasma radiation source is disclosed. The method comprises disposing a glass capillary in a throughbore of a metal fitting, heating the metal fitting; and applying a pressure to the glass capillary such that the glass capillary conforms to the shape of, and forms a direct glass-to-metal seal with, the throughbore. Also disclosed is a nozzle for a droplet generator for a laser-produced plasma radiation source, and the radiation source itself, wherein the nozzle comprises the glass capillary for emitting fuel as droplets and the metal fitting for coupling the glass capillary to a body of the droplet generator, the glass capillary being conformed to a shape of a throughbore of the metal fitting, and wherein the glass capillary forms a direct glass-to-metal seal with the throughbore.
Abstract:
An actuator to displace, for example a mirror, provides movement with at least two degrees of freedom by varying the currents in two electromagnets. A moving part includes a permanent magnet with a magnetic face constrained to move over a working area lying substantially in a first plane perpendicular to a direction of magnetization of the magnet. The electromagnets have pole faces lying substantially in a second plane closely parallel to the first plane, each pole face substantially filling a quadrant of the area traversed by the face of the moving magnet. An optical position sensor may direct a beam of radiation at the moving magnet through a central space between the electromagnets. The sizes of facets in a pupil mirror device may be made smaller in a peripheral region, but larger in a central region, thereby relaxing focusing requirements.
Abstract:
A method of manufacturing a nozzle for a droplet generator for a laser-produced plasma radiation source is disclosed. The method comprises disposing a glass capillary in a throughbore of a metal fitting, heating the metal fitting; and applying a pressure to the glass capillary such that the glass capillary conforms to the shape of, and forms a direct glass-to-metal seal with, the throughbore. Also disclosed is a nozzle for a droplet generator for a laser-produced plasma radiation source, and the radiation source itself, wherein the nozzle comprises the glass capillary for emitting fuel as droplets and the metal fitting for coupling the glass capillary to a body of the droplet generator, the glass capillary being conformed to a shape of a throughbore of the metal fitting, and wherein the glass capillary forms a direct glass-to-metal seal with the throughbore.
Abstract:
An actuator to displace, for example a mirror, provides movement with at least two degrees of freedom by varying the currents in two electromagnets. A moving part includes a permanent magnet with a magnetic face constrained to move over a working area lying substantially in a first plane perpendicular to a direction of magnetization of the magnet. The electromagnets have pole faces lying substantially in a second plane closely parallel to the first plane, each pole face substantially filling a quadrant of the area traversed by the face of the moving magnet. An optical position sensor may direct a beam of radiation at the moving magnet through a central space between the electromagnets. The sizes of facets in a pupil mirror device may be made smaller in a peripheral region, but larger in a central region, thereby relaxing focusing requirements.
Abstract:
An EUV optical apparatus includes a number of adjustable mirrors (22x) on mirror bodies (120). Each mirror body is supported on an actuator (100x) comprising a moving part (132, 134, 136) and a fixed casing part (128, 130). The actuator provides a resilient support (140, 142) for the mirror body so that it is tiltable with two degrees relative to the casing. An electromagnetic motor (166, 170-178) applies first part, under the influence of an applied motive force, the resilient mounting being arranged to provide a biasing force that resists said motive force. A magnetic coupling (102, 104a, 104b) is arranged between the moving and fixed parts so as to provide a counter-biasing force. The counter-biasing force partly opposes said biasing force and thereby reduces the motive force required to effect a given displacement. The actuator can thus be made with reduced size, weight and heat dissipation.
Abstract:
An EUV optical apparatus includes a number of adjustable mirrors (22x) on mirror bodies (120). Each mirror body is supported on an actuator (100x) comprising a moving part (132, 134, 136) and a fixed casing part (128, 130). The actuator provides a resilient support (140, 142) for the mirror body so that it is tiltable with two degrees relative to the casing. An electromagnetic motor (166, 170-178) applies first part, under the influence of an applied motive force, the resilient mounting being arranged to provide a biasing force that resists said motive force. A magnetic coupling (102, 104a, 104b) is arranged between the moving and fixed parts so as to provide a counter-biasing force. The counter-biasing force partly opposes said biasing force and thereby reduces the motive force required to effect a given displacement. The actuator can thus be made with reduced size, weight and heat dissipation.