Abstract:
A programmed material consolidation apparatus includes at least one fabrication site and a material consolidation system associated with the at least one fabrication site. The at least one fabrication site may be configured to receive one or more fabrication substrates, such as semiconductor substrates. A machine vision system with a translatable or locationally fixed camera may be associated with the at least one fabrication site and the material consolidation system. A cleaning component may also be associated with the at least one fabrication site. The cleaning component may share one or more elements with the at least one fabrication site, or may be separate therefrom. The programmed material consolidation apparatus may also include a substrate handling system, which places fabrication substrates at appropriate locations of the programmed material consolidation apparatus.
Abstract:
Methods for forming interconnects in microfeature workpieces, and microfeature workpieces having such interconnects are disclosed herein. In one embodiment, a method of forming an interconnect in a microfeature workpiece includes forming a hole extending through a terminal and a dielectric layer to at least an intermediate depth in a substrate of a workpiece. The hole has a first lateral dimension in the dielectric layer and a second lateral dimension in the substrate proximate to an interface between the dielectric layer and the substrate. The second lateral dimension is greater than the first lateral dimension. The method further includes constructing an electrically conductive interconnect in at least a portion of the hole and in electrical contact with the terminal.
Abstract:
Microelectronic imagers and methods for packaging microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging unit can include a microelectronic die, an image sensor, an integrated circuit electrically coupled to the image sensor, and a bond-pad electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the die and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad with conductive fill material at least partially disposed in the passage. An electrically conductive support member is carried by and projects from the bond-pad. A cover over the image sensor is coupled to the support member.
Abstract:
Systems and methods for testing microelectronic imagers and microfeature devices are disclosed herein. In one embodiment, a method includes providing a microfeature workpiece including a substrate having a front side, a backside, and a plurality of microelectronic dies. The individual dies include an integrated circuit and a plurality of contact pads at the backside of the substrate operatively coupled to the integrated circuit. The method includes contacting individual contact pads with corresponding pins of a probe card. The method further includes testing the dies. In another embodiment, the individual dies can further comprise an image sensor at the front side of the substrate and operatively coupled to the integrated circuit. The image sensors are illuminated while the dies are tested.
Abstract:
Substrate precursor structures include a substrate blank having at least one aperture extending substantially through the substrate blank. At least a portion of at least one conductive layer covers a surface of the at least one aperture of the substrate blank. A mask pattern covers a portion of the at least one conductive layer and exposes another portion of the at least one conductive layer to define at least one conductive element, at least a portion of which extends over the surface of the at least one aperture.
Abstract:
An electrical contact for use with a semiconductor device, a carrier, a probe card, or another substrate includes a dielectric core, a conductive coating on at least a portion of the core, or both that are at least partially fabricated by a programmed material consolidation process, such as, but not limited to, stereolithography, in which unconsolidated material is selectively consolidated in accordance with a program. The electrical contact may be flexible and resilient or it may be rigid. Protective structures may accompany flexible, resilient contacts to prevent deformation thereof beyond their elastic limits.
Abstract:
A method for fabricating a semiconductor device component, such as a probe card, includes providing a support plate with at least one aperture therethrough and providing at least one contact in the at least one aperture. Ends of the at least one contact may be enlarged to retain the same within the at least one aperture. A protective structure may be provided to prevent excessive compression of the at least one contact. The support plate, all or part of the at least one contact, the protective structure, or a combination thereof may be formed by a programmed material consolidation process, such as stereolithography, in which unconsolidated material is selectively consolidated in accordance with a program.
Abstract:
A semiconductor component includes a base die and a secondary die stacked on and bonded to the base die. The base die includes conductive vias which form an internal signal transmission system for the component, and allow the circuit side of the secondary die to be bonded to the back side of the base die. The component also includes an array of terminal contacts on the circuit side of the base die in electrical communication with the conductive vias. The component can also include an encapsulant on the back side of the base die, which substantially encapsulates the secondary die, and a polymer layer on the circuit side of the base die which functions as a protective layer, a rigidifying member and a stencil for forming the terminal contacts. A method for fabricating the component includes the step of bonding singulated secondary dice to base dice on a base wafer, or bonding a secondary wafer to the base wafer, or bonding singulated secondary dice to singulated base dice.
Abstract:
A microelectronic package and method for forming such a package. In one embodiment, the package can include a microelectronic substrate having first connection sites, and a support member having second connection sites and third connection sites, with the third connection sites accessible for electrical coupling to other electrical structures. A plurality of electrically conductive couplers are connected between the first connection sites and the second connection sites, with neighboring conductive couplers being spaced apart to define at least one flow channel. The at least one flow channel is in fluid communication with a region external to the microelectronic substrate. The generally non-conductive material can be spaced apart from the support member to allow the microelectronic substrate to be separated from the support member.
Abstract:
A method, structure and system for forming a through-hole conductor in a substrate includes forming a hole having an inner surface from a first side of the semiconductor substrate to a second side of the semiconductor substrate and plating the inner surface of the semiconductor substrate to form a conductive element when a plating solution is forced from the first side of the semiconductor substrate to the second side of the semiconductor substrate through the hole. The hole is plated in a generally planar plating topology from the first side to the second side of the semiconductor wafer. The through-hole conductor may be formed in a plating system where the semiconductor substrate forms at least a partial partition between a higher pressure bath and a lower pressure bath with the plating solution passing through the hole causing plating within the inner surface of the hole.