摘要:
A method of producing a semiconductor crystal is provided. The method includes the steps of preparing a longitudinal container with a seed crystal and an impurity-containing melt placed in a bottom section and with a suspension part arranged in an upper section and suspending a dropping raw material block made of a semiconductor material having an impurity concentration lower than the impurity concentration of the impurity-containing melt, and creating a temperature gradient in the longitudinal direction of the longitudinal container to melt the dropping raw material block, and solidifying the impurity-containing melt from the side that is in contact with the seed crystal (8) while dropping a produced melt into the impurity-containing melt, thereby producing a semiconductor crystal.
摘要:
Method of high-yield manufacturing superior semiconductor devices includes: a step of preparing a GaN substrate having a ratio St/S—of collective area (St cm2) of inversion domains in, to total area (S cm2) of the principal face of, the GaN substrate—of no more than 0.5, with the density along the (0001) Ga face, being the substrate principal face, of inversion domains whose surface area where the polarity in the [0001] direction is inverted with respect to the principal domain (matrix) is 1 μm2 or more being D cm−2; and a step of growing on the GaN substrate principal face an at least single-lamina semiconductor layer to form semiconductor devices in which the product Sc×D of the area Sc of the device principal faces, and the density D of the inversion domains is made less than 2.3.
摘要:
Affords a GaN single-crystal mass, a method of its manufacture, and a semiconductor device and method of its manufacture, whereby when the GaN single-crystal mass is being grown, and when the grown GaN single-crystal mass is being processed into a substrate or like form, as well as when an at least single-lamina semiconductor layer is being formed onto a single-crystal GaN mass in substrate form to manufacture semiconductor devices, cracking is controlled to a minimum. The GaN single-crystal mass 10 has a wurtzitic crystalline structure and, at 30° C., its elastic constant C11 is from 348 GPa to 365 GPa and its elastic constant C13 is from 90 GPa to 98 GPa; alternatively its elastic constant C11 is from 352 GPa to 362 GPa.
摘要:
There is provided a method for fabricating a gallium nitride crystal with low dislocation density, high crystallinity, and resistance to cracking during polishing of sliced pieces by growing the gallium nitride crystal using a gallium nitride substrate including dislocation-concentrated regions or inverted-polarity regions as a seed crystal substrate. Growing a gallium nitride crystal 79 at a growth temperature higher than 1,100° C. and equal to or lower than 1,300° C. so as to bury dislocation-concentrated regions or inverted-polarity regions 17a reduces dislocations inherited from the dislocation-concentrated regions or inverted regions 17a, thus preventing new dislocations from occurring over the dislocation-concentrated regions or inverted-polarity regions 17a. This also increases the crystallinity of the gallium nitride crystal 79 and its resistance to cracking during the polishing.
摘要:
A method of producing a semiconductor crystal is provided. The method includes the steps of preparing a longitudinal container with a seed crystal and an impurity-containing melt placed in a bottom section and with a suspension part arranged in an upper section and suspending a dropping raw material block made of a semiconductor material having an impurity concentration lower than the impurity concentration of the impurity-containing melt, and creating a temperature gradient in the longitudinal direction of the longitudinal container to melt the dropping raw material block, and solidifying the impurity-containing melt from the side that is in contact with the seed crystal (8) while dropping a produced melt into the impurity-containing melt, thereby producing a semiconductor crystal.
摘要:
A method of manufacturing a nitride substrate includes the following steps. Firstly, a nitride crystal is grown. Then, the nitride substrate including a front surface is cut from the nitride crystal. In the step of cutting, the nitride substrate is cut such that an off angle formed between an axis orthogonal to the front surface and an m-axis or an a-axis is greater than zero. When the nitride crystal is grown in a c-axis direction, in the step of cutting, the nitride substrate is cut from the nitride crystal along a flat plane which passes through a front surface and a rear surface of the nitride crystal and does not pass through a line segment connecting a center of a radius of curvature of the front surface with a center of a radius of curvature of the rear surface of the nitride crystal.
摘要:
In order to provide light emitting devices which have simple constructions and thus can be fabricated easily, and can stably provide high light emission efficiencies for a long time period, a light emitting device includes an n-type nitride semiconductor layer at a first main surface side of a nitride semiconductor substrate, a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at the first main surface side and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer at the first main surface side. The nitride semiconductor substrate has a resistivity of 0.5 Ω·cm or less and the p-type nitride semiconductor layer side is down-mounted so that light is emitted from the second main surface of the nitride semiconductor substrate at the opposite side from the first main surface.
摘要:
Affords Group III nitride semiconductor devices in which the leakage current from the Schottky electrode can be decreased. In a high electron mobility transistor 1, a supporting substrate 3 is composed of AlN, AlGaN, or GaN. An AlyGa1-yN epitaxial layer 5 has a surface roughness (RMS) of 0.25 mm or less, wherein the surface roughness is defined by a square area measuring 1 μm per side. A GaN epitaxial layer 7 is provided between the AlyGa1-yN supporting substrate 3 and the AlyGa1-yN epitaxial layer 5. A Schottky electrode 9 is provided on the AlyGa1-yN epitaxial layer 5. A first ohmic electrode 11 is provided on the AlyGa1-yN epitaxial layer 5. A second ohmic electrode 13 is provided on the AlyGa1-yN epitaxial layer 5. One of the first and second ohmic electrodes 11 and 13 constitutes a source electrode, and the other constitutes a drain electrode. The Schottky electrode 9 constitutes a gate electrode of the high electron mobility transistor 1.
摘要翻译:提供可以减少来自肖特基电极的漏电流的III族氮化物半导体器件。 在高电子迁移率晶体管1中,支撑基板3由AlN,AlGaN或GaN构成。 Al钇1-y N外延层5具有0.25mm或更小的表面粗糙度(RMS),其中表面粗糙度由测量1的正方形面积 妈妈每边。 在AlGaN外延层7之间设置有支撑衬底3的Al 1 Y y-N支撑衬底和Al 1 Al- 在N外延层5上设置肖特基电极9.设置第一欧姆电极11和第一欧姆电极11。 在Al钇1-y N外延层5上。第二欧姆电极13设置在Al钇1 Ga -Y / N外延层5.第一和第二欧姆电极11和13中的一个构成源电极,另一个构成漏电极。 肖特基电极9构成高电子迁移率晶体管1的栅电极。