Abstract:
Affords methods of growing III nitride single crystals of favorable crystallinity with excellent reproducibility, and the III nitride crystals obtained by the growth methods. One method grows a III nitride single crystal (3) inside a crystal-growth vessel (11), the method being characterized in that a porous body formed from a metal carbide, whose porosity is between 0.1% and 70% is employed in at least a portion of the crystal-growth vessel (11). Employing the crystal-growth vessel (11) makes it possible to discharge from 1% to 50% of a source gas (4) inside the crystal-growth vessel (11) via the pores in the porous body to the outside of the crystal-growth vessel (11).
Abstract:
The present invention makes available an AlN crystal growth method enabling large-area, thick AlN crystal to be stably grown. An AlN crystal growth method of the present invention is provided with a step of preparing an SiC substrate (4) having a major face (4m) with a 0 cm−2 density of micropipes (4mp) having tubal diameters of down to 1000 μm, and a not greater than 0.1 cm−2 density of micropipes (4mp) having tubal diameters of between 100 μm and less than 1000 μm; and a step of growing AlN crystal (5) onto the major face (4m) by vapor-phase deposition.
Abstract:
Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
Abstract:
III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
Abstract:
This III-nitride single-crystal growth method, being a method of growing a AlxGa1-xN single crystal (4) by sublimation, is furnished with a step of placing source material (1) in a crucible (12), and a step of sublimating the source material (1) to grow AlxGa1-xN (0
Abstract translation:作为通过升华生长Al x Ga 1-x N单晶(4)的方法的III族氮化物单晶生长方法具有将源材料(1)放置在坩埚(12)中的步骤,并且 使源材料(1)升华以在坩埚(12)中生长Al x Ga 1-x N(0
Abstract:
Methods of growing and manufacturing aluminum nitride crystal, and aluminum nitride crystal produced by the methods. Preventing sublimation of the starting substrate allows aluminum nitride crystal of excellent crystallinity to be grown at improved growth rates. The aluminum nitride crystal growth method includes the following steps. Initially, a laminar baseplate is prepared, furnished with a starting substrate having a major surface and a back side, a first layer formed on the back side, and a second layer formed on the first layer. Aluminum nitride crystal is then grown onto the major surface of the starting substrate by vapor deposition. The first layer is made of a substance that at the temperatures at which the aluminum nitride crystal is grown is less liable to sublimate than the starting substrate. The second layer is made of a substance whose thermal conductivity is higher than that of the first layer.
Abstract:
The present III-nitride crystal manufacturing method, a method of manufacturing a III-nitride crystal (20) having a major surface (20m) of plane orientation other than {0001}, designated by choice, includes: a step of slicing III-nitride bulk crystal (1) into a plurality of III-nitride crystal substrates (10p), (10q) having major surfaces (10pm), (10qm) of the designated plane orientation; a step of disposing the substrates (10p), (10q) adjoining each other sideways in such a way that the major surfaces (10pm), (10qm) of the substrates (10p), (10q) parallel each other and so that the [0001] directions in the substrates (10p), (10q) are oriented in the same way; and a step of growing III-nitride crystal (20) onto the major surfaces (10pm), (10qm) of the substrates (10p), (10q).