Abstract:
A training shoe for soccer includes a pressure-responsive sensor mounted with respect to a soccer shoe at a selected location, for example at the instep or along the laces at the top of the shoe. When a soccer ball is kicked at the selected location, the sensor provides an electrical signal to a microprocessor, causing selection logic in the microprocessor to choose one of several control words. The selected control word is provided to a voice playback circuit to select one of several digital data sets, each set corresponding to a different sound. The playback circuit provides an analog electrical control signal to a speaker, thereby generating a selected sound corresponding to the selected digital data set. System components can be mounted permanently to a shoe, or to a cover or strap arrangement releasably mounted to the shoe.
Abstract:
A method, system and computer program product are provided for implementing an enhanced Z-directional macro port assignment or three-dimensional port creation for random logic macros of heterogeneous hierarchical integrated circuit chips. An initial port placement is provided on a layer for a macro. The initial port placement is expanded to provide a three-dimensional port shape including a plurality of metal layers along a z-axis. Wire routing of each of the macro level and a chip top level is defined within the expanded three-dimensional port shape. Each unnecessary metal layer of the expanded three-dimensional port shape is removed, providing a final three-dimensional port shape.
Abstract:
A method for designing integrated circuits uses clock signal interleaving to reduce the likelihood of a soft error arising from an upset in a clock distribution network. At least two circuits in a circuit description are identified as being sensitive to radiation, and different clock distribution nodes are assigned to the two circuits. Several exemplary implementations are disclosed. The second circuit may be a redundant replica of the first circuit, such as a reset circuit. The first and second circuits may be components of a modular redundant circuit such as a triple modular redundancy flip-flop. The first circuit may include a set of data bits for an entry of a storage array such as a register or memory array, and the second circuit may include a set of check bits associated with the entry.
Abstract:
A method, system and computer program product are provided for implementing an enhanced Z-directional macro port assignment or three-dimensional port creation for random logic macros of heterogeneous hierarchical integrated circuit chips. An initial port placement is provided on a layer for a macro. The initial port placement is expanded to provide a three-dimensional port shape including a plurality of metal layers along a z-axis. Wire routing of each of the macro level and a chip top level is defined within the expanded three-dimensional port shape. Each unnecessary metal layer of the expanded three-dimensional port shape is removed, providing a final three-dimensional port shape.
Abstract:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Abstract:
A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.
Abstract:
A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.
Abstract:
In an embodiment, a buffer bay is represented with a moveable object that has a location within a unit in a netlist. The location of the moveable object that represents the buffer bay is changed to a new location in the netlist if changing the location improves placement within the unit. In an embodiment, a net weight of a net that connects the moveable object to an artificial pin is considered in determining whether to change the location to the new location. In an embodiment a bounding area that encompasses the location is considered in determining whether to change the location to the new location.
Abstract:
An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.
Abstract:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.