Abstract:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Abstract:
Managing a direct memory access (‘DMA’) injection first-in-first-out (‘FIFO’) messaging queue in a parallel computer, including: inserting, by a messaging unit management module, a DMA message descriptor into the injection FIFO messaging queue; determining, by the messaging unit management module, the number of extra slots in an immediate messaging queue required to store DMA message data associated with the DMA message descriptor; and responsive to determining that the number of extra slots in the immediate message queue required to store the DMA message data is greater than one, inserting, by the messaging unit management module, a number of DMA dummy message descriptors into the injection FIFO messaging queue, wherein the number of DMA dummy message descriptors is at least as many as the number of extra slots in the immediate messaging queue that are required to store the DMA message data.
Abstract:
Data communications in a parallel active messaging interface (‘PAMI’) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a SEND instruction, the SEND instruction specifying a transmission of transfer data from the origin endpoint to a first target endpoint; transmitting from the origin endpoint to the first target endpoint a Request-To-Send (‘RTS’) message advising the first target endpoint of the location and size of the transfer data; assigning by the first target endpoint to each of a plurality of target endpoints separate portions of the transfer data; and receiving by the plurality of target endpoints the transfer data.
Abstract:
Executing computing tasks on a parallel computer that includes compute nodes coupled for data communications, where each compute node executes tasks, with one task on each compute node designated as a master task, including: for each task on each compute node until all master tasks have joined a global barrier: determining whether the task is a master task; if the task is not a master task, joining a single local barrier; if the task is a master task, joining the global barrier and the single local barrier only after all other tasks on the compute node have joined the single local barrier.
Abstract:
Administering truncated receive functions in a parallel messaging interface (‘PMI’) of a parallel computer comprising a plurality of compute nodes coupled for data communications through the PMI and through a data communications network, including: sending, through the PMI on a source compute node, a quantity of data from the source compute node to a destination compute node; specifying, by an application on the destination compute node, a portion of the quantity of data to be received by the application on the destination compute node and a portion of the quantity of data to be discarded; receiving, by the PMI on the destination compute node, all of the quantity of data; providing, by the PMI on the destination compute node to the application on the destination compute node, only the portion of the quantity of data to be received by the application; and discarding, by the PMI on the destination compute node, the portion of the quantity of data to be discarded.
Abstract:
Eager send data communications in a parallel active messaging interface (‘PAMI’) of a parallel computer, the PAMI composed of data communications endpoints that specify a client, a context, and a task, including receiving an eager send data communications instruction with transfer data disposed in a send buffer characterized by a read/write send buffer memory address in a read/write virtual address space of the origin endpoint; determining for the send buffer a read-only send buffer memory address in a read-only virtual address space, the read-only virtual address space shared by both the origin endpoint and the target endpoint, with all frames of physical memory mapped to pages of virtual memory in the read-only virtual address space; and communicating by the origin endpoint to the target endpoint an eager send message header that includes the read-only send buffer memory address.
Abstract:
Methods, apparatus, products are disclosed for providing policy-based application services to an application running on a computing system. The computing system includes at least one compute node. The compute node includes an application and a plurality of application services of a service type. Providing policy-based application services to an application running on a computing system includes establishing, on the compute node, a service policy specifying one of the application services of the service type for use by the application, establishing a performance ruleset, the performance ruleset specifying rules for analyzing the performance of the computing system, measuring performance of the computing system, and adjusting the service policy in dependence upon the performance ruleset and the measured performance. Providing policy-based application services to an application running on a computing system may also include accessing, by the application, the specified application service.
Abstract:
Methods, apparatuses, and computer program products for scheduling synchronization in association with collective operations in a parallel computer that includes a shared memory and a plurality of compute nodes that execute a parallel application utilizing the shared memory are provided. Embodiments include acquiring an available channel of the shared memory; posting to the acquired channel of the shared memory one or more collective operations and a synchronization point; determining that processing within the acquired channel has reached the synchronization point; and posting to the acquired channel, in response to determining that processing within the acquired channel has reached the synchronization point, a background synchronization operation corresponding to the one or more collective operations.
Abstract:
Data communications in a parallel active messaging interface (‘PAMI’) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.
Abstract:
Systems, methods and articles of manufacture are disclosed for effecting a desired collective operation on a parallel computing system that includes multiple compute nodes. The compute nodes may pipeline multiple collective operations to effect the desired collective operation. To select protocols suitable for the multiple collective operations, the compute nodes may also perform additional collective operations. The compute nodes may pipeline the multiple collective operations and/or the additional collective operations to effect the desired collective operation more efficiently.