Abstract:
A latch device and related layout techniques are provided to reduce soft error rates caused by radiation or other exposure to ionized/charged particles. The latch device comprises a pair of cross-coupled inverters forming a storage cell. A pair of clock pass transistors is coupled to the pair of cross-coupled inverters. The pair of clock pass transistors is configured to receive as input a clock signal. On both true and complement sides of the latch device, a channel-connected region is formed between one of the pair of cross-coupled inverters and one of the pair of clock pass transistors. Each channel-connected region is configured to have a reduced Linear Energy Transfer (LET) cross-section. The reduced LET cross-section results in a reduced soft error rate.
Abstract:
A latch device and related layout techniques are provided to reduce soft error rates caused by radiation or other exposure to ionized/charged particles. The latch device comprises a pair of cross-coupled inverters forming a storage cell. A pair of clock pass transistors is coupled to the pair of cross-coupled inverters. The pair of clock pass transistors is configured to receive as input a clock signal. On both true and complement sides of the latch device, a channel-connected region is formed between one of the pair of cross-coupled inverters and one of the pair of clock pass transistors. Each channel-connected region is configured to have a reduced Linear Energy Transfer (LET) cross-section. The reduced LET cross-section results in a reduced soft error rate.
Abstract:
A lateral bipolar transistor includes a semiconductor layer overlying an electrically insulating material and an insulating layer overlying a central portion of the semiconductor layer. A contact hole resides in the insulating layer and a conductive material overlies the insulating layer and makes electrical contact with the semiconductor layer through the contact hole, thereby forming a base contact. The semiconductor layer has a first conductivity type in a central region which substantially underlies the conductive material, and has a second conductivity type in regions adjacent the central region. The first region forms a base region and the adjacent regions form a collector region and an emitter region, respectively. A method of forming a lateral bipolar transistor device is also disclosed. The method includes forming a semiconductor layer over an insulating material and forming an insulating layer over the semiconductor material. A base contact hole is then formed in the insulating layer and a conductive base contact region is formed over a portion of the insulating layer. The base contact region overlies the base contact hole and makes an electrical connection to a middle portion of the semiconductor layer, which corresponds to a base region. Lastly, a collector region and an emitter region are formed on opposite sides of the base region such that the collector region and the emitter region are adjacent the base region, respectively.
Abstract:
An SOI transistor structure and SOI circuit is disclosed. The SOI transistor structure includes a conductive base layer and an insulating layer overlying the conductive base layer. A semiconductor layer overlies the insulating layer and includes a source region and a drain region therein with a channel region disposed therebetween. A conductive gate region overlies generally the channel region of the semiconductor layer. The SOI circuit includes a conductive base layer and an insulating layer overlying the conductive base layer. A semiconductor layer overlies the insulating layer. A first circuit structure and a second circuit structure are formed in a first region and second region of the semiconductor layer, respectively. A conductive contact region extends through the insulating layer and electrically connects at least one of the first circuit structure and the second circuit structure to the conductive base layer.
Abstract:
A method for fabricating a field effect transistor (FET) in and on a semiconductor substrate with local interconnects to permit the formation of minimal insulating space between polysilicon gate and the local interconnects by fabricating the source and drain of the FET and the local interconnects prior to forming the gate of the FET. A portion of an insulating layer between the source and drain is removed prior to forming the gate. Preferably, an etch stop layer on the semiconductor substrate underlying the insulating layer is used in the method.
Abstract:
Some logic circuits preferentially reside in a particular state. Advantages are gained by a circuit that forces the circuit to the preferential state but allows the preferred state to be overridden. A node in the logic circuit is driven to a particular state, in one embodiment, by a pull-up transistor connected to a pull-down transistor that respectively drive the node to a high state and a low state. A keeper circuit is connected to the node and drives the node to the preferred state unless overpowered by the pull-up transistor and the pull-down transistor. The keeper circuit drives the node using a transistor that is weaker than the pull-up transistor and weaker than the pull-down transistor. A startup-circuit is connected to the node and drives the node to the preferred state when the node powers-up in the nonpreferred state. The start-up circuit drives the node using a transistor that is weaker than the keeper circuit transistor.
Abstract:
A method and the resulting device to permit the formation of minimal insulating space between polysilicon gates by forming an insulating layer over the polysilicon gates and protecting selected ones of the gates and the insulating layer with an etch barrier so that the opening for local interconnect metallization can be misaligned and the selected gates will be protected by its etch barrier and not be exposed to the opening. Further, local interconnect conductive material can pass over a gate or unrelated resistor without shorting the gate/resistor.
Abstract:
A semiconductor memory array with Built-in Self-Repair (BISR) includes redundancy circuits associated with failed row address stores to drive redundant row word lines, thereby obviating the supply and normal decoding of a substitute addresses. NOT comparator logic compares a failed row address generated and stored by BISR circuits to a row address supplied to the memory array. A TRUE comparator configured in parallel with the NOT comparator simultaneously compares defective row address signal to the supplied row address. Since NOT comparison is performed quickly in dynamic logic without setup and hold time constraints, timing impact on a normal (non-redundant) row decode path is negligible, and since TRUE comparison, though potentially slower than NOT comparison, itself identifies a redundant row address and therefore need not employ an N-bit address to selected word-line decode, redundant row addressing is rapid and does not adversely degrade performance of a self-repaired semiconductor memory array. By providing redundancy handling at the predecode circuit level, rather than at a preliminary address substitution stage, access times to a BISR memory array in accordance with the present invention are improved.
Abstract:
A content-addressable memory wherein match transistors are prevented from discharging a match line by either placing transistors in series with the match transistors and only turning them on during a match sensing period, or a match sense line which is driven near the precharge voltage of the match line until the match sensing period. The match sensing line also provides charging current to recharge the match line. For some applications, a differential match line amplifier is used to detect matches and mismatches. The match sense line can be used with a CAM having a four-transistor comparator. The invention is also applicable to match lines in programmable-array logic (PAL) cells, and for either NMOS or PMOS circuits.
Abstract:
A fully associative translation lookaside buffer (TLB) using a content addressable memory (CAM) array to store virtual addresses and a static random access memory (SRAM) array to store corresponding physical addresses. The TLB incorporates a logic circuit that allows the SRAM to be accessed during both associative and non-associative modes by word lines that are strictly a function of corresponding match lines. Additionally, the logic circuit incorporated in the TLB does not introduce any additional delay in outputting the physical address from the SRAM during the associative mode.