Abstract:
The present invention comprises a method and apparatus for an integrated circuit (IC) that uses 1 of N signals to reduce the circuit's wire to wire effective capacitance. The present invention comprises a logic tree circuit coupled to a first 1 of N input signal, a second 1 of N input signal, and a 1 of N output signal where the 1 of N signals' reduce the signal's wire to wire effective capacitance. Other embodiments of the present invention include the use of a 1 of 2 signal, a 1 of 3 signal, a 1 of 4 signal, and a 1 of 8 signal where one and one of the wires of the signal is active.
Abstract:
The present invention is a method and apparatus for a register cell that is configured to store information. The cell includes a multiplexer that is configurable to select various inputs when the multiplexer is in various states. The multiplexer is configurable to select a first input when the multiplexer is in a first state, and to select a second input when the multiplexer is in a second state. The multiplexer is further configured to provide storage data, the first input being configured to receive data from outside the cell. An output element, such as a second multiplexer, is configured to receive a word enable. The output of the first multiplexer is delayed in a delay element, and is provided as one of the inputs to the first multiplexer.
Abstract:
A compact, integrated semiconductor device includes a first transistor and a second transistor. The first transistor has a gate formed by a first portion of a gate material. A second portion of the gate material provides the bulk material for a second transistor. The device can be utilized in a six-transistor SRAM cell. The two-transistor structure can include a p-channel transistor and an n-channel transistor of such a cell.
Abstract:
This invention discloses a software tool 20 that generates wire route rules between logic gates in a semiconductor device for the automated layout of the logic gates in the device. The software tool 20 includes a routing rule generation tool 22 that creates a route rule database 30 for a given semiconductor fabrication technology and circuit family of logic gates, and includes a block build tool 32 that interconnects the logic gates with routes according to the route rules generated by the routing rule generation tool 22. The routing rule generation tool 22 further includes a noise sensitivity/gate characterization tool 24 and a rule generator tool 28. The block build tool 32 further includes a gate sizing tool 34, a gate analysis tool 36, a route rule selecting tool 38, a route assigning tool 42.
Abstract:
A logic device with improved capacitance isolation and a design methodology that reduces parasitic capacitance is disclosed. The logic device includes a virtual ground node, a plurality of input signals that may be individual wires of one or more N-NARY signals, and two or more discharge paths. Each discharge path includes an evaluate node, one or more transistors gated by the input signals, and one or more intermediate nodes, one of which is coupled to the virtual ground node. In one embodiment, the discharge paths are perfectly isolated from each other for every combination of inputs. In another embodiment, intermediate nodes on discharge paths maybe electrically coupled to the evaluation path only at the intermediate node coupled to the virtual ground node.
Abstract:
The present invention is a method and apparatus that initializes N-NARY logic and dynamic logic to a special stress mode. The present invention has a logic circuit that includes a shared logic tree with one or more evaluate nodes, one or more precharge devices, and an evaluate device. Coupled to the evaluate nodes is a state generation control circuit that generates a state signal. A state generation circuit receives the state signal from the state generation control circuit and initializes the evaluate nodes to a functionally illegal state that initializes the logic circuit to the special stress mode. One embodiment of the present invention initializes the evaluate nodes to a low state. When the first logic circuit in a series of logic circuits is initialized to the functionally illegal state, the present invention will initialize the succeeding logic circuits in the series as each phase in the different clock domains evaluate, which initializes the succeeding logic circuits to the special stress mode.
Abstract:
A method of forming minimal gaps or spaces in conductive lines pattern for increasing the density of integrated circuits by first forming an opening in an insulating layer overlying the conductive line by conventional optical lithography, followed by forming sidewalls in the opening to create a reduced opening, and using the sidewalls as a mask to remove, preferably by etching, a portion of the conductive line pattern substantially equal in size to the reduced opening.
Abstract:
A gated clock driver is configured to provide an enable signal and a gated clock signal at each of a plurality flip-flops. One of the p-channel transistors of the gated clock driver's NOR gate is distributed to each of the flip-flops or latches in the system. Additionally, an extra n-channel transistor is provided in the gated clock circuit to form an inverter with the nondistributed p-channel transistor. More particularly, the p-channel transistor that is driven by the system clock input is distributed to each of the flip-flops. Similarly, the enable input (at the output of the new inverter) is distributed to each of the flip-flops. Since the gated clock signal cannot be generated without the enable signal being high and the system clock being low, distributing enable and the p-channel transistor which receives the system clock as an input minimizes clock skew as compared to flip-flops with a completely shared clock gating clock.
Abstract:
A static random access memory (SRAM) cell having increased cell capacitance at the storage nodes utilizes a capacitive structure. The capacitive structure includes a dielectric material between polysilicon conductive lines and tungsten local interconnects. The polysilicon plates are each connected to drains of lateral transistors associated with the SRAM cell. A dielectric material such as silicon dioxide may be deposited between the local interconnect and polysilicon conductive lines. The capacitor structures are provided between first and second N-channel pull down transistors associated with the SRAM cell.
Abstract:
A digital clock waveform generator and method for generating a clock signal are provided for a microprocessor or other digital circuit to provide on chip generation of internal clock signals having the same frequency as or a higher or lower frequency than an externally applied clock signal. In one embodiment, the waveform generator includes a delay chain and a control unit that matches the propagation delay of the delay chain to the period of an input timing signal. The waveform generator provides precise control of the duty cycles of the internally generated clock signals, and allows for rapid starting and stopping of the internal clock signals for power reduction functions. The waveform generator may further provide a system clock, and may include circuitry to precisely control the phase relationships between the various clock signals. The waveform generator is easily manufactured with digital circuitry that automatically compensates for changing environmental conditions such as operating voltage and temperature.