摘要:
A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
摘要:
In an ASIC element, vias are integrated into the CMOS processing of an ASIC substrate. The ASIC element includes an active front side in which the circuit functions are implemented. The at least one via is intended to establish an electrical connection between the active front side and the rear side of the element. The front side of the via is defined by at least one front-side trench which is completely filled, and the rear side is defined by at least one rear-side trench which is not completely filled. The rear-side trench opens into the filled front-side trench.
摘要:
A method for constructing an electrical circuit that includes at least one semiconductor chip encapsulated with a potting compound is disclosed. The method includes applying a galvanic layer arrangement for forming an electrochemical element on an element of the electrical circuit including the at least one semiconductor chip.
摘要:
An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
摘要:
A micromechanical component for a capacitive sensor device includes first and second electrodes. The first electrode is at least partially formed from a first semiconductor layer and/or metal layer, and at least one inner side of the second electrode facing the first electrode is formed from a second semiconductor layer and/or metal layer. A cavity is between the first and second electrodes. Continuous recesses are structured into the inner side of the second electrode and sealed off with a closure layer. At least one reinforcing layer of the second electrode and at least one contact element which is electrically connected to the first electrode, to the layer of the second electrode which forms the inner side, to at least one printed conductor, and/or to a conductive substrate area, are formed from at least one epi-polysilicon layer. Also described is a micromechanical component manufacturing method for a capacitive sensor device.
摘要:
A vertically integrated hybrid component is implemented in the form of a wafer level package including: at least two element substrates assembled one above the other; a molded upper sealing layer made of an electrically insulating casting; and an external electrical contacting of the component being implemented on the top side via at least one contact stamp which is embedded in the sealing layer so that (i) its lower end is connected to a wiring level of an element substrate and (ii) its upper end is exposed in the surface of the sealing layer.
摘要:
A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
摘要:
A pressure sensor component includes a MEMS component having at least one pattern element that is able to be deflected perpendicular to the component plane, which is equipped with at least one electrode of a measuring capacitor device, and an ASIC component having integrated circuit elements and at least one back end stack, at least one counter-electrode of the measuring capacitor device being developed in a metallization plane of the back end stack. The MEMS component is mounted on the back end pile of the ASIC component. The MEMS component includes at least one pressure-sensitive diaphragm pattern and is mounted on the ASIC component in such a way that the pressure-sensitive diaphragm pattern spans a cavity between the MEMS component and the back end stack of the ASIC component.
摘要:
A component system includes at least one MEMS element, a cap for a micromechanical structure of the MEMS element, and at least one ASIC substrate. The micromechanical structure of the MEMS element is implemented in the functional layer of an SOI wafer. The MEMS element is mounted face down, with the structured functional layer on the ASIC substrate, and the cap is implemented in the substrate of the SOI wafer. The ASIC substrate includes a starting substrate provided with a layered structure on both sides. At least one circuit level is implemented in each case both in the MEMS-side layered structure and in the rear-side layered structure of the ASIC substrate. In the ASIC substrate, at least one ASIC through contact is implemented which electrically contacts at least one circuit level of the rear-side layered structure and/or at least one circuit level of the MEMS-side layered structure.
摘要:
A micromechanical component having a conductive substrate, a first conductive layer provided above the substrate and that forms, above a cavity provided in the substrate, an elastically deflectable diaphragm region of monocrystalline silicon and an adjacent peripheral region, a circuit trace level provided above the first conductive layer in a manner that is electrically insulated from the first conductive layer, the circuit trace level having above the diaphragm region a first electrode region and having above the peripheral region a first connection region electrically connected to the same, and a second conductive layer that is provided above the circuit trace level, the second conductive layer having above the diaphragm region a second electrode region that is electrically insulated from the first electrode region, and having above the peripheral region a second connection region electrically insulated from the second electrode region and electrically connected to the first connection region. Also provided is a suitable production method.