摘要:
A pressure sensor includes: a base substrate including an embossed pattern; a first conductive layer disposed on the base substrate; a pressure sensitive material layer disposed on the first conductive layer such that its electrical characteristic is varied corresponding to a strain applied thereto, the pressure sensitive material layer including a dielectric and nanoparticles dispersed in the dielectric; and a second conductive layer disposed on the pressure sensitive material layer, wherein the dielectric and the nanoparticle include materials having pyroelectricities of polarities opposite to each other.
摘要:
A light emitting capacitor can include a first and second electrode, an electroluminescent layer, and at least one elastomeric layer. The electroluminescent layer, which can include an elastomeric material doped with semiconducting nanoparticles, can be disposed between the first and second electrodes. The elastomeric layer can encapsulate the first electrode, second electrode, and electroluminescent layer. The first and second electrodes can be hydrogel or conductive electrodes. The light emitting capacitor can provide dynamic coloration or sensory feedback. The light emitting capacitor can be used in, for example, robotics, wearables (displays, sensors, textiles), and fashion.
摘要:
A transparent pressure sensor and a manufacturing method thereof are provided. The transparent pressure sensor includes several layers of transparent electrodes, at least one pressure-sensitive deformation layer between the transparent electrodes, and a metal oxide layer. Each layer of the transparent electrodes is composed of nanowires, and the metal oxide layer is disposed in a space among the nanowires.
摘要:
The present disclosure relates to a force sensor including a first substrate, a first electrode installed in a pattern on an upper surface of the first substrate, a second substrate disposed above and spaced apart from the first substrate, a second electrode installed in a pattern on a lower surface of the second substrate, facing the first electrode, and a dielectric interposed between the first substrate and the second substrate, wherein the dielectric includes a first dielectric surrounding an outside of the second electrode, and a pressure rib connecting the first dielectric to the first electrode, and a method for preparing the same, and shows a remarkably superior effect to related art, in terms of capacitance, interactivity and durability.
摘要:
Embodiments of solid-state stress sensors are presented herein. A sensor system may include a substrate, a first layer of sensing material disposed on a first surface of the substrate, and at least three electrodes forming a first and second electrode pair. The at least three electrodes may include a first electrode, a second electrode, and a third electrode. The first electrode may be disposed in a first plane and the second electrode and the third electrode may be disposed in a second plane, the first and second planes associated with a first direction parallel to the first surface. The first and second electrodes may be at least partially offset in the first direction. The first and third electrodes may be at least partially offset in the first direction. The sensor system may be configured to generate an output signal in response to a shear stress within the sensing material.
摘要:
A manufacturing method for a MEMS element, by which both a microphone including a microphone capacitor and a pressure sensor including a measuring capacitor are implemented in the MEMS structure. The components of the microphone and pressure sensor are formed in parallel but independently in the layers of the MEMS structure. The pressure sensor diaphragm is structured from a first layer, which functions as a base layer for the microphone diaphragm. The fixed counter-electrode of the measuring capacitor is structured from an electrically conductive second layer which functions as a diaphragm layer of the microphone. The fixed pressure sensor counter-element is structured from third and fourth layers. The third layer functions in the area of the microphone structure as a sacrificial layer, the thickness of which in the area of the microphone structure determines the electrode distance of the microphone capacitor. The microphone counter-element is structured from the fourth layer.
摘要:
An electronic ink cartridge includes, in a direction of a central axis within a cylindrical body, a core body extended out from a distal end of the cylindrical body, a coupling member disposed on a side of a proximal end of the cylindrical body, a coil housed between the core body and the coupling member and having a predetermined inductance, and a pressure sensitive element whose capacitance changes according to pressure applied to the core body. Two terminals of the coil are electrically connected respectively to two terminals of the pressure sensitive element to thereby form two terminals of a resonance circuit formed by the coil and the pressure sensitive element. A connecting terminal electrically connected to at least one of the two terminals of the resonance circuit is disposed on a proximal end surface side of the coupling member to be accessible thereon from outside.
摘要:
Input devices are provided. In accordance with an example embodiment, an input device includes an interface layer that flexes in response to pressure, a plurality of sense electrodes, a dielectric between the sense electrodes and the interface layer, and interconnecting circuitry. The dielectric compresses or expands in response to movement of the interface layer, and exhibits dielectric characteristics that vary based upon a state of compression of the dielectric. The interconnecting circuitry is to the sense electrodes and provides an output indicative of both the position of each sense electrode and an electric characteristic at each sense electrode that provides an indication of pressure applied to the dielectric adjacent the respective sense electrodes.
摘要:
The integrated electronic device detects the pressure related to a force applied in a predetermined direction within a solid structure. The device includes an integrated element that is substantially orthogonal to the direction of application of the force. First and second conductive elements are configured to face an operating surface. A measure module includes first and second measurement terminals which are electrically connected to the first and second conductive elements, respectively. A detecting element is arranged in the predetermined direction such that the operating surface is sandwiched between the first and second conductive elements and this detecting element. An insulating layer galvanically insulates the first and second conductive elements. A layer of dielectric material is sandwiched between the detecting element and the insulating layer, and is elastically deformable following the application of the force to change an electromagnetic coupling between the detecting element and the first and second conductive elements.
摘要:
A pressure sensor (20) includes a test cell (32) and sense cell (34). The sense cell (34) includes an electrode (42) formed on a substrate (30) and a sense diaphragm (68) spaced apart from the electrode (42) to produce a sense cavity (64). The test cell (32) includes an electrode (40) formed on the substrate (30) and a test diaphragm (70) spaced apart from the electrode (40) to produce a test cavity (66). Both of the cells (32, 34) are sensitive to pressure (36). However, a critical dimension (76) of the sense diaphragm (68) is less than a critical dimension (80) of the test diaphragm (70) so that the test cell (32) has greater sensitivity (142) to pressure (36) than the sense cell (34). Parameters (100) measured at the test cell (32) are utilized to estimate a sensitivity (138) of the sense cell (34).