Abstract:
A yaw rate sensor, including a substrate and a main extension plane, for detecting a yaw rate around a first direction in parallel to the main extension plane, a first Coriolis mass, and a second Coriolis mass, and a drive device configured to drive the first and second Coriolis masses in parallel to a drive direction perpendicular to the first direction, the first and second Coriolis masses, for a yaw rate around the first direction, experiencing a Coriolis acceleration in parallel to a detection direction, which is perpendicular to the drive and first directions, the first and second Coriolis masses having first/second partial areas and third/fourth partial areas, respectively. The first and third partial areas are farther from the axis of symmetry in parallel to the first direction, and the second and fourth partial areas are closer to the axis of symmetry in parallel to the first direction.
Abstract:
A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A yaw rate sensor includes: at least one Coriolis element; a drive device connected to the Coriolis element and configured to drive a vibration of the Coriolis element; a detection device having at least one rotor; and a coupling device connected to the detection device and to the Coriolis element. The coupling device is configured to couple a deflection in the plane of vibration of the Coriolis element to the detection device in a direction orthogonal to the vibration, so that when the Coriolis element is deflected a torque for driving the at least one rotor is transmitted from the Coriolis element to the at least one rotor.
Abstract:
A yaw-rate sensor includes: a substrate having a main extension plane for detecting a yaw rate about a first axis extending parallel to the main extension plane; a first Coriolis element; a second Coriolis element; a third Coriolis element; and a fourth Coriolis element. The first Coriolis element and the fourth Coriolis element are drivable in the same direction parallel to a second axis extending parallel to the main extension plane and perpendicularly to the first axis. The first Coriolis element and the second Coriolis element are drivable in opposite directions parallel to the second axis. The first Coriolis element and the third Coriolis element are drivable in opposite directions parallel to the second axis.
Abstract:
A rotational rate sensor includes: a substrate having a main plane of extension; a first Coriolis element; and a second Coriolis element. The first Coriolis element and the second Coriolis element have a first and a second center of gravity, respectively, and the elements are drivable along a drive direction. In the idle state of the rotational rate sensor, (i) the distance between the first center of gravity and the second center of gravity along the detection direction is less than a first value, and (ii) the distance between the first center of gravity and the second center of gravity along the third direction is less than a second value.
Abstract:
In a yaw rate sensor with a substrate having a main extent plane and with a first and second partial structure disposed parallel to the main extent plane, the first partial structure includes a first driving structure and the second partial structure includes a second driving structure, the first and second partial structure being excitable by a driving device, via the first and second driving structure, into oscillation parallel to a first axis parallel to the main extent plane, the first partial structure having a first Coriolis element and the second partial structure having a second Coriolis element, the yaw rate sensor being characterized in that the first and second Coriolis elements are displaceable by a Coriolis force parallel to a second axis, which is perpendicular to the first axis, and parallel to a third axis, which is perpendicular to the first and second axis, the second axis extending parallel to the main extent plane, and the first Coriolis element being connected to the second Coriolis element via a coupling element.
Abstract:
A rotation rate sensor includes: a mounting device; a first drive frame having a drive, which is designed to set the first drive frame into a first oscillatory motion along an axis of oscillation relative to the mounting device; a first stator electrode; a first actuator electrode coupled to the first drive frame in such a way that in a rotary motion of the rotation rate sensor due to a Coriolis force, the first actuator electrode being displaceable in a first deflection direction relative to the first stator electrode; and an evaluation device configured to determine a voltage applied between the first stator electrode and the first actuator electrode, and to specify information regarding the rotary motion of the rotation rate sensor while taking the determined voltage value into account.
Abstract:
A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element.
Abstract:
A yaw-rate sensor is described as having a substrate which has a main plane of extension for detecting a yaw rate about a first axis extending parallel to the main plane of extension is provided, the yaw-rate sensor having a first rotation element and a second rotation element, the first rotation element being drivable about a first axis of rotation, the second rotation element being drivable about a second axis of rotation, the first axis of rotation being situated perpendicularly to the main plane of extension, the second axis of rotation being situated perpendicularly to the main plane of extension, the first rotation element and the second rotation element being drivable in opposite directions.