摘要:
According to an embodiment of the invention, a chip package is provided. The chip package includes a semiconductor substrate having an upper surface and an opposite lower surface, a through-hole penetrating the upper surface and the lower surface of the semiconductor substrate, a chip disposed overlying the upper surface of the semiconductor substrate, a conducting layer overlying a sidewall of the through-hole and electrically connecting the chip, a first insulating layer overlying the upper surface of the semiconductor substrate, a second insulating layer overlying the lower surface of the semiconductor substrate, and a bonding structure disposed overlying the lower surface of the semiconductor substrate, wherein a material of the second insulating layer is different from that of the first insulating layer.
摘要:
Apparatus for forming a semiconductor structure comprising a first layer on top of a substrate wherein the first layer defines conductive regions such as copper interconnect lines and non-conductive regions such as dielectric materials. The conductive regions are covered by a second layer of a material different than the first layer such as for example nickel and then the structure is heat treated such that the interconnect lines and second metal, such as a copper interconnect line and a nickel second layer, interact with each other to form an alloy layer. The alloy layer has superior qualities for adhering to both the copper interconnect lines and a subsequently deposited dielectric material.
摘要:
A method is described for selectively etching a high k dielectric layer that is preferably a hafnium or zirconium oxide, silicate, nitride, or oxynitride with a selectivity of greater than 2:1 relative to silicon oxide, polysilicon, or silicon. The plasma etch chemistry is comprised of one or more halogen containing gases such as CF4, CHF3, CH2F2, CH3F, C4F8, C4F6, C5F6, BCl3, Br2, HF, HCl, HBr, HI, and NF3 and leaves no etch residues. An inert gas or an inert gas and oxidant gas may be added to the halogen containing gas. In one embodiment, a high k gate dielectric layer is removed on portions of an active area in a MOS transistor. Alternatively, the high k dielectric layer is used in a capacitor between two conducting layers and is selectively removed from portions of an ILD layer.
摘要:
A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method further includes a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
摘要:
A process for forming a composite insulator spacer on the sides of a MOSFET gate structure, has been developed. The process features formation of additional insulator spacer shapes on top portions of sides of a gate structure in which an initial insulator spacer had been removed during an over etch cycle used for definition of the initial insulator spacer. The re-establishment of insulator spacer shapes provides a composite insulator spacer offering reduced risk of gate to substrate leakage or shorts, that can occur during a subsequent salicide procedure from the presence of metal silicide stringers or ribbons formed on, and residing on the composite insulator spacer.
摘要:
A chip package includes a substrate having an upper and a lower surface and including: at least a first contact pad; a non-optical sensor chip disposed overlying the upper surface, wherein the non-optical sensor chip includes at least a second contact pad and has a first length; a protective cap disposed overlying the non-optical sensor chip, wherein the protective cap has a second length, an extending direction of the second length is substantially parallel to that of the first length, and the second length is shorter than the first length; an IC chip disposed overlying the protective cap, wherein the IC chip includes at least a third contact pad and has a third length, and an extending direction of the third length is substantially parallel to that of the first length; and bonding wires forming electrical connections between the substrate, the non-optical sensor chip, and the IC chip.
摘要:
A power MOSFET package includes a semiconductor substrate having opposite first and second surfaces, having a first conductivity type, and forming a drain region, a doped region extending downward from the first surface and having a second conductivity type, a source region in the doped region and having the first conductivity type, a gate overlying or buried under the first surface, wherein a gate dielectric layer is between the gate and the semiconductor substrate, a first conducting structure overlying the semiconductor substrate, having a first terminal, and electrically connecting the drain region, a second conducting structure overlying the semiconductor substrate, having a second terminal, and electrically connecting the source region, a third conducting structure overlying the semiconductor substrate, having a third terminal, and electrically connecting the gate, wherein the first, the second, and the third terminals are substantially coplanar, and a protection layer between the semiconductor substrate and the terminals.
摘要:
A semiconductor structure includes a substrate, and a first MOS device on the first region of the substrate wherein the first MOS device includes a first spacer liner. The semiconductor structure further includes a second MOS device on the second region wherein the second MOS device includes a second spacer liner. A first stressed film having a first thickness is formed over the first MOS device and directly on the first spacer liner. A second stressed film having a second thickness is formed over the second MOS device and directly on the second spacer liner. The first and the second stressed films may be formed of a same material.
摘要:
A method of forming a channel region for a MOSFET device in a strained silicon layer via employment of adjacent and surrounding silicon-germanium shapes, has been developed. The method features simultaneous formation of recesses in a top portion of a conductive gate structure and in portions of the semiconductor substrate not occupied by the gate structure or by dummy spacers located on the sides of the conductive gate structure. The selectively defined recesses will be used to subsequently accommodate silicon-germanium shapes, with the silicon-germanium shapes located in the recesses in the semiconductor substrate inducing the desired strained channel region. The recessing of the conductive gate structure and of semiconductor substrate portions reduces the risk of silicon-germanium bridging across the surface of sidewall spacers during epitaxial growth of the alloy layer, thus reducing the risk of gate to substrate leakage or shorts.
摘要:
A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.