摘要:
The present invention generally provides apparatus and methods for forming LED structures. One embodiment of the present invention provides a method for fabricating a compound nitride structure comprising forming a first layer comprising a first group-III element and nitrogen on substrates in a first processing chamber by a hydride vapor phase epitaxial (HVPE) process or a metal organic chemical vapor deposition (MOCVD) process, forming a second layer comprising a second group-III element and nitrogen over the first layer in a second processing chamber by a MOCVD process, and forming a third layer comprising a third group-III element and nitrogen over the second layer by a MOCVD process.
摘要:
Embodiments of the present invention generally relate to methods and apparatus for chemical vapor deposition (CVD) on a substrate, and, in particular, to a process chamber and components for use in metal organic chemical vapor deposition. The apparatus comprises a chamber body defining a process volume. A showerhead in a first plane defines a top portion of the process volume. A carrier plate extends across the process volume in a second plane forming an upper process volume between the showerhead and the susceptor plate. A transparent material in a third plane defines a bottom portion of the process volume forming a lower process volume between the carrier plate and the transparent material. A plurality of lamps forms one or more zones located below the transparent material. The apparatus provides uniform precursor flow and mixing while maintaining a uniform temperature over larger substrates thus yielding a corresponding increase in throughput.
摘要:
A method and apparatus that may be utilized in deposition processes, such as hydride vapor phase epitaxial (HVPE) deposition of metal nitride films, are provided. A first set of passages may introduce a metal containing precursor gas. A second set of passages may provide a nitrogen-containing precursor gas. The first and second sets of passages may be interspersed in an effort to separate the metal containing precursor gas and nitrogen-containing precursor gas until they reach a substrate. An inert gas may also be flowed down through the passages to help keep separation and limit reaction at or near the passages, thereby preventing unwanted deposition on the passages.
摘要:
One embodiment of the forming a nanocrystalline diamond-structured carbon layer on a silicon carbide layer comprises providing a silicon carbide layer in a reaction chamber and exposing the silicon carbide layer to a chlorine containing gas for an exposure time period to form a nanocrystalline diamond-structured carbon layer from the silicon carbide layer.
摘要:
A method including removing an impurity from a gas stream to a processing chamber at a point of use. An apparatus with a point of use purifier on a gas stream. An apparatus including a shelf having dimensions suitable for placement within a thermal processing including a body of a material that renders the body opaque to radiation frequency range used for a temperature measurement of a substrate in a thermal processing chamber.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
摘要:
A method and apparatus for hydride vapor phase epitaxial (HVPE) deposition is disclosed. In the HVPE process, a hydride gas flows over a metal source to react with the metal source, which then reacts at the surface of a substrate to deposit a metal nitride layer. The metal source comprises gallium, aluminum, and/or indium. The hydride gas is evenly provided over the metal source to increase efficiency of hydride-metal source reaction. An exhaust positioned diametrically across the chamber from the metal source creates a cross flow of the hydride-metal source product and nitrogen precursor across the chamber tangential to the substrate. A purge gas flowing perpendicular to the cross flow directs the hydride-metal source product and nitrogen precursor to remain as close to the substrate as possible.
摘要:
An actuator for performing work in a nuclear reactor is described. In one embodiment, the actuator includes an x-axis linear slide assembly, a y-axis linear slide assembly, and a z-axis linear slide assembly. The x-axis linear slide assembly is mounted to a junction box, the y-axis linear slide assembly is mounted on a carriage of the x-axis assembly, and the z-axis linear slide assembly is mounted on a carriage of the y-axis assembly. The actuator also includes motor assemblies coupled to respective linear slide assemblies. Each motor assembly includes a motor and a resolver sealed in a leakproof can. Pulley-timing belt assemblies couple each motor to a respective lead screw. Specifically, a drive pulley is connected to a rotor shaft of each motor, and a lead screw pulley is secured to an end of each lead screw. Each pulley-timing belt assembly also includes an idler pulley, and a belt extends around the lead screw pulley, the idler pulley, and the drive pulley. The motor assemblies are mounted so that the axis of each motor is substantially parallel to the axis the respective lead screw. By mounting motor assemblies in this configuration, the overall dimensions of the actuator are believed to be minimized when each slide assembly is fully retracted. The actuator further includes a delivery system interface for firmly attaching the actuator to a delivery system, and a tool mounting platform attached to the z-axis linear slide assembly. Threaded openings are located on the platform face and are used to secure various attachments to the platform. Many different attachments, such as an ultrasonic inspection unit, a brushing unit, and an electrical discharge machine (EDM) unit, can be secured to the platform.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.