摘要:
A method for a multiple-stage microwave plasma cleaning technique for efficiently cleaning a substrate processing chamber. In a specific embodiment, a two-stage cleaning process is described. The first stage begins by flowing a reactive gas from a gas source into a processing chamber where microwaves ignite and maintain a plasma from the reactive gas. Reactive radicals generated which react with residues on the interior surfaces of the processing chamber. In the second stage, an inert gas is flowed into the processing chamber in addition to the reactive gas. Microwaves then ignite and maintain a plasma from the reactive gas and optionally, the inert gas as well. Optionally, an inert gas can be flowed into the processing chamber prior to the first stage to remove loose particles from the processing chamber. The reactive gas in such embodiments is preferably NF.sub.3, but other fluorine-containing gases such as carbon tetrafluoride (CF.sub.4) or sulfur hexafluoride (SF.sub.6) may also be used. Moreover, chlorine- or other halogen-containing gases may also be used as the reactive gas in other embodiments in place of fluorine-containing gases.
摘要:
A method for the in situ cleaning of a semiconductor deposition chamber utilized for the deposition of a semiconductor material such as titanium or titanium nitride comprising, between wafers, introducing chlorine gas into the chamber at elevated temperature, purging the chamber with an inert gas and evacuating it before introduction of the next wafer. A two-stage between wafer cleaning process is carried out by introducing chlorine into the chamber at elevated temperature, thereafter initiating a plasma without removing the chlorine, purging the chamber with an inert gas and evacuating it before introduction of the next wafer. In a preferred embodiment, a thin protective film of titanium is deposited on the inner surfaces of the chamber prior to utilizing the chamber for the deposition of such material. The protective layer is replenished following each two-stage cleaning.
摘要:
A method and apparatus for cleaning a chamber in a substrate processing system having less reactivity with the chamber walls and the components contained therein. The method includes mixing a diluent gas with a flow of radicals produced by a plasma remotely disposed with respect to the chamber, at a point located between a plasma applicator and the chamber. The apparatus includes a fluid manifold having multiple inlets and an outlet with the outlet being coupled to an intake port of the chamber. One of the inlets are in fluid communication with the plasma applicator, with the remaining inlets being in fluid communication with a supply of the diluent gas. In this fashion, the diluent gas flow and the flow of reactive radicals mix when traveling between the inlets and the outlet to form a gas-radical mixture egressing from the outlet and traversing through the intake port.
摘要:
The present invention generally provides apparatus and methods for forming LED structures. One embodiment of the present invention provides a method for fabricating a compound nitride structure comprising forming a first layer comprising a first group-III element and nitrogen on substrates in a first processing chamber by a hydride vapor phase epitaxial (HVPE) process or a metal organic chemical vapor deposition (MOCVD) process, forming a second layer comprising a second group-III element and nitrogen over the first layer in a second processing chamber by a MOCVD process, and forming a third layer comprising a third group-III element and nitrogen over the second layer by a MOCVD process.
摘要:
A method for the in situ cleaning of a semiconductor deposition chamber utilized for the deposition of a semiconductor material such as titanium or titanium nitride comprising, between wafers, introducing chlorine gas into the chamber at elevated temperature, purging the chamber with an inert gas and evacuating it before introduction of the next wafer. A two-stage between wafer cleaning process is carried out by introducing chlorine into the chamber at elevated temperature, thereafter initiating a plasma without removing the chlorine, purging the chamber with an inert gas and evacuating it before introduction of the next wafer. In a preferred embodiment, a thin protective film of titanium is deposited on the inner sur aces of the chamber prior to utilizing the chamber for he deposition of such material. The protective layer is replenished following each two-stage cleaning.
摘要:
The present invention generally provides apparatus and methods for forming LED structures. One embodiment of the present invention provides a method for fabricating a compound nitride structure comprising forming a first layer comprising a first group-III element and nitrogen on substrates in a first processing chamber by a hydride vapor phase epitaxial (HVPE) process or a metal organic chemical vapor deposition (MOCVD) process, forming a second layer comprising a second group-III element and nitrogen over the first layer in a second processing chamber by a MOCVD process, and forming a third layer comprising a third group-III element and nitrogen over the second layer by a MOCVD process.