摘要:
A system for measuring substrate concentricity includes a substrate support member adapted to rotate a substrate around a substantially vertical axis. The substrate includes a mounting surface and a process surface. The system also includes a spin cup positioned below the substrate and a translatable arm mounted a predetermined distance above the process surface of the substrate. The translatable arm is adapted to translate along a radius of the substrate. The system further includes an optical emitter mounted on the translatable arm and an optical detector mounted on the translatable arm.
摘要:
A method and apparatus for plating a conductive material onto a substrate is provided. The apparatus includes a fluid processing cell having a fluid basin configured to contain an electrolyte solution and having an opening configured to receive a substrate for processing, an anode assembly positioned in the fluid basin, and a collimator positioned in the fluid basin between the anode assembly and the opening.
摘要:
A method and apparatus for an electrochemical processing cell that is configured to minimize bevel and backside deposition. The apparatus includes a contact ring assembly for supporting a substrate, a thrust plate movably positioned to engage a substrate positioned on the contact pins, and a lip seal member positioned to contact the thrust plate and the contact ring to prevent fluid flow therebetween. The lip seal includes a at least one bubble release channel formed therethrough. The method includes positioning an electric field barrier between a backside substrate engaging member and a frontside substrate supporting member to prevent electric field from traveling to the bevel and backside of the substrate. The electric field barrier including at least one bubble release channel formed therethrough.
摘要:
The present invention provides an apparatus for depositing a film on a substrate comprising a processing chamber, a substrate support member disposed within the chamber, a first gas inlet, a second gas inlet, a plasma generator and a gas exhaust. The first gas inlet provides a first gas at a first distance from an interior surface of the chamber, and the second gas inlet provides a second gas at a second distance that is closer than the first distance from the interior surface of the chamber. Thus, the second gas creates a higher partial pressure adjacent the interior surface of the chamber to significantly reduce deposition from the first gas onto the interior surface. The present invention also provides a method for depositing a FSG film on a substrate comprising: introducing first gas through a first gas inlet at a first distance from an interior surface of the chamber, and introducing a second gas through a second gas inlet at a second distance from the interior surface of the chamber, wherein the second gas creates a higher partial pressure adjacent the interior surface of the chamber to prevent deposition from the first gas on the interior surface. Alternatively, the first gas is introduced at a different angle from the second gas with respect to a substrate surface.
摘要:
Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have two separate precursor sources coupled thereto to permit two separate layers to be deposited. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the gallium and the aluminum and at a lower temperature. The different temperatures causes the gases to mix together, react and deposit on the substrate with little or no deposition on the chamber walls.
摘要:
Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have two separate precursor sources coupled thereto to permit two separate layers to be deposited. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the gallium and the aluminum and at a lower temperature. The different temperatures causes the gases to mix together, react and deposit on the substrate with little or no deposition on the chamber walls.
摘要:
Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have two separate precursor sources coupled thereto to permit two separate layers to be deposited. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the gallium and the aluminum and at a lower temperature. The different temperatures causes the gases to mix together, react and deposit on the substrate with little or no deposition on the chamber walls.
摘要:
The present invention generally provides apparatus and methods for forming LED structures. One embodiment of the present invention provides a method for fabricating a compound nitride structure comprising forming a first layer comprising a first group-III element and nitrogen on substrates in a first processing chamber by a hydride vapor phase epitaxial (HVPE) process or a metal organic chemical vapor deposition (MOCVD) process, forming a second layer comprising a second group-III element and nitrogen over the first layer in a second processing chamber by a MOCVD process, and forming a third layer comprising a third group-III element and nitrogen over the second layer by a MOCVD process.
摘要:
A system for measuring substrate concentricity includes a substrate support member adapted to rotate a substrate around a substantially vertical axis. The substrate includes a mounting surface and a process surface. The system also includes a spin cup positioned below the substrate and a translatable arm mounted a predetermined distance above the process surface of the substrate. The translatable arm is adapted to translate along a radius of the substrate. The system further includes an optical emitter mounted on the translatable arm and an optical detector mounted on the translatable arm.