摘要:
A trans-disciplinary system for cell-free biosynthesis includes a cell-free transcription-translation (TX-TL) tool and modular, generalizable microfluidic architectures. Both components of the system are independently functional and are combinable into a cell-free biosynthesis platform. In the first component, modular plasmid libraries are used to program bacterial cell-free TX-TL systems. Each plasmid holds one gene or operon, and all the genes are controlled by the same promoter, so that the stoichiometry of enzyme synthesis is determined by the stoichiometry of plasmids in the reaction. In the second part, in order to facilitate high throughput mixing and matching of gene units from the modular plasmid libraries, a modular, reconfigurable, flexible, and scalable microfluidic architecture is employed. The microfluidic modules share common form factors and port/valve locations, so that a small set of module types, with multiple instances of each type interconnected in different geometries, allows simple reconfiguration to achieve different modes of operation.
摘要:
In exemplary implementations, transplantation of nucleic acids into cells occurs in microfluidic chambers. The nucleic acids may be large nucleic acid molecules with more than 100 kbp. In some cases, the microfluidic chambers have only one orifice that opens to a flow channel. In some cases, flow through a microfluidic chamber temporarily ceases due to closing one or more valves. Transplantation occurs during a period in which the contents of the chambers are shielded from shear forces. Diffusion, centrifugation, suction from a vacuum channel, or dead-end loading may be used to move cells or buffers into the chambers.
摘要:
In exemplary implementations, transplantation of nucleic acids into cells occurs in microfluidic chambers. The nucleic acids may be large nucleic acid molecules with more than 100 kbp. In some cases, the microfluidic chambers have only one orifice that opens to a flow channel. In some cases, flow through a microfluidic chamber temporarily ceases due to closing one or more valves. Transplantation occurs during a period in which the contents of the chambers are shielded from shear forces. Diffusion, centrifugation, suction from a vacuum channel, or dead-end loading may be used to move cells or buffers into the chambers.
摘要:
The invention provides a bio-sensing nanodevice comprising: a stabilized biologically-derived G-protein coupled receptor—the olfactory receptor—on a support, a real time receptor-ligand binding detection method, an odorant delivery system and an odorant recognition program. The biologically-derived G-protein coupled receptor can be stabilized on nanotechnology using surfactant peptide. The said nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized biologically-derived G-protein coupled receptor—the olfactory receptor—immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
摘要:
The invention provides a bio-sensing nanodevice comprising: a stabilized G-protein coupled receptor on a support, a real time receptor-ligand binding detection method, a test composition delivery system and a test composition recognition program. The G-protein coupled receptor can be stabilized using surfactant peptide. The nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized G-protein coupled receptor immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
摘要:
In exemplary implementations of this invention, an electronic olfactor determines whether a scent being tested matches the scent of a positive control. The electronic olfactor can perform this scent matching even in a changing olfactory environment, and even if the positive control scent is a combination of hundreds or thousands of different odorants. No prior training is needed, and no attempt is made to identify a single odorant that is unambiguously responsible for a scent. Instead, a computer compares the total scent pattern of a positive control sample with the total scent pattern of a test sample, across a sweep of many permutations of electrical inputs to scent sensors, to try to find any condition under which the total scent patterns do not match. If such a condition cannot be found, then the computer declares a match between the test and target scents.
摘要:
Methods and apparatus for determining water content in a bulk heterogeneous material using electromagnetic radiation. A radiation source and a radiation receiver are positioned such that the material to be measured is located between them. As the radiation signal is transmitted from the source to the receiver, the signal experiences a path loss due, at least in part to the presence of the material located between the source and the receiver. The path loss in the transmitted signal, when recorded over time may be used to determine the water content of the material.
摘要:
The invention provides a bio-sensing nanodevice comprising: a stabilized biologically-derived G-protein coupled receptor—the olfactory receptor—on a support, a real time receptor-ligand binding detection method, an odorant delivery system and an odorant recognition program. The biologically-derived G-protein coupled receptor can be stabilized on nanotechnology using surfactant peptide. The said nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized biologically-derived G-protein coupled receptor—the olfactory receptor—immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
摘要:
In exemplary implementations of this invention, an electronic olfactor determines whether a scent being tested matches the scent of a positive control. The electronic olfactor can perform this scent matching even in a changing olfactory environment, and even if the positive control scent is a combination of hundreds or thousands of different odorants. No prior training is needed, and no attempt is made to identify a single odorant that is unambiguously responsible for a scent. Instead, a computer compares the total scent pattern of a positive control sample with the total scent pattern of a test sample, across a sweep of many permutations of electrical inputs to scent sensors, to try to find any condition under which the total scent patterns do not match. If such a condition cannot be found, then the computer declares a match between the test and target scents.
摘要:
The present invention provides a wet or dry bio-sensitized photoelectric conversion device (photodetector or photovoltaic) comprising: a stabilized biologically-derived sensitizer, such as a stablilized photosystem I (PS-I), deposited on nanowires, semiconductor material, electrodes and a support. The nanowires provide a greater surface area of the light absorption layer for better energy conversion efficiency and are chosen such as to complement the absorption spectrum of the sensitizer and protect the sensitizer from photobleaching.