Abstract:
An embodiment integrated circuit device and a method of making the same. The embodiment method includes forming a first nitride layer over a gate stack supported by a substrate, implanting germanium ions in the first nitride layer in a direction forming an acute angle with a top surface of the substrate, etching away germanium-implanted portions of the first nitride layer to form a first asymmetric nitride spacer confined to a first side of the gate stack, the first asymmetric nitride spacer protecting a first source/drain region of the substrate from a first ion implantation, and implanting ions in a second source/drain region of the substrate on a second side of the gate stack unprotected by the first asymmetric nitride spacer to form a first source/drain.
Abstract:
A method of manufacturing a silicon wafer provides a silicon wafer which can reduce the precipitation of oxygen to prevent a wafer deformation from being generated and can prevent a slip extension due to boat scratches and transfer scratches serving as a reason for a decrease in wafer strength, even when the wafer is provided to a rapid temperature-rising-and-falling thermal treatment process.
Abstract:
A method of manufacturing a silicon wafer provides a silicon wafer which can reduce the precipitation of oxygen to prevent a wafer deformation from being generated and can prevent a slip extension due to boat scratches and transfer scratches serving as a reason for a decrease in wafer strength, even when the wafer is provided to a rapid temperature-rising-and-falling thermal treatment process.
Abstract:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
Abstract:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
Abstract:
A copper film is treated by applying light at short wavelengths, e.g., at less than 0.6 μm, to heat the copper film and generate a large temperature gradient from the surface of the copper to the interface between the copper and underlying silicon. As a result, grain growth in the copper is enhanced.
Abstract:
A method of the production of a nanoparticle dispersed composite material capable of controlling a particle size and a three dimensional arrangement of the nanoparticles is provided. The method of the production of a nanoparticle dispersed composite material of the present invention includes a step (a) of arranging a plurality of core fine particle-protein complexes having a core fine particle, which comprises an inorganic material, internally included within a protein on the top surface of a substrate, a step (b) of removing the protein, a step (c) of conducting ion implantation from the top surface of the substrate, and a step (d) of forming nanoparticles including the ion implanted by the ion implantation as a raw material, inside of the substrate.
Abstract:
A doping method includes implanting first impurity ions into a semiconductor substrate, so as to form a damaged region in the vicinity of a surface of the semiconductor substrate, the first impurity ions not contributing to electric conductivity; implanting second impurity ions into the semiconductor substrate through the damaged region, the second impurity ions having an atomic weight larger than the first impurity ions and contributing to the electric conductivity; and heating the surface of the semiconductor substrate with a light having a pulse width of about 0.1 ms to about 100 ms, so as to activate the second impurity ions.