Abstract:
An apparatus and method for detecting pattern defects and/or particles on the front surface of a semiconductor wafer having repetitive patterns includes a laser for illuminating an area on the front surface with a beam of polarized light. A lens collects light scattered from the area and forms a Fourier diffraction pattern of the area illuminated. A Fourier mask blocks out scattered light collected by the lens at locations in the Fourier diffraction pattern where the intensity is above a predetermined level indicative of background information and leaves in light at locations where the intensity is below the threshold level indicative of possible particle information. The Fourier mask includes a spatial light modulator and a polarization discriminator. The lens also images the area illuminated onto a camera using scattered light collected from the area by the lens and not blocked out by the Fourier mask. In one embodiment of the invention the spatial light modulator is optically addressable and in other embodiments of the invention the spatial light modulator is electrically addressable.
Abstract:
A dynamic reflective spatial attenuator for use in an optical inspection apparatus. The attenuator takes the form of a two-dimensional micro-mechanical reflective array that, in the first operative position of a mirror element, reflects the desired scattered light toward a detector and, in the second operative position of a mirror element, reflects undesired scattered light into a light dump. The mirror array's fast response and flexibility allows for changes during mid-scan to increase the defect's or contaminant's signal relative to the substrate surface's signal.
Abstract:
An apparatus and method for detecting particles on a surface of a semiconductor wafer having repetitive patterns includes a laser for illuminating an area on the front surface at grazing angle of incidence with a beam of polarized light. A lens collects light scattered from the area and forms a Fourier diffraction pattern of the area illuminated. A Fourier mask blocks out light collected by the lens at locations in the Fourier diffraction pattern where the intensity is above a predetermined level indicative of background information and leaves in light at locations where the intensity is below the threshold level indicative of possible particle information. The Fourier mask includes an optically addressable spatial light modulator and a polarization discriminator. A camera detects scattered light collected from the area by the lens and not blocked out by the Fourier mask.
Abstract:
An apparatus for detecting particles on the front surface of a patterned semiconductor wafer having repetitive patterns includes a laser for illuminating an area on the front surface at grazing angle of incidence with a beam of polarized light. A lens collects light scattered from the area and forms a Fourier diffraction pattern of the area illuminated. A Fourier mask blocks out light collected by the lens at locations in the Fourier diffraction pattern where the intensity is above a predetermined level indicative of background information and leaves in light at locations where the intensity is below the threshold level indicative of possible particle information. The Fourier mask includes an optically addressable spatial light modulator and a crossed polarizer with the Fourier diffraction pattern being used as both a read beam and a write beam for the spatial light modulator. A camera detects scattered light collected from the area by the lens and not blocked out by the Fourier mask.
Abstract:
A method is disclosed for selecting an optimal value for an adjustable parameter of a structured light metrology (SLM) system, for scanning an object. The SLM system performs test scans of the object to acquire a plurality of sets of measurements of the object, wherein a different value is used for the parameter for each test scan. For each test scan, a value of a quality metric is calculated, based on the set of measurements of the object associated with the test scan and simulation data representing a simulated scan of the object by the SLM system. A test scan is then identified that has a quality metric value that satisfies a specified optimization criterion; and a value of the adjustable parameter that was used for the identified test scan is selected as the optimal value of the adjustable parameter, for scanning the object.
Abstract:
A photostimulation apparatus includes an objective lens arranged to face a biological object, a light source configured to output light to be radiated toward the biological object via the objective lens, a shape acquisition unit configured to acquire information about a shape with a refractive index difference in the biological object, a hologram generation unit configured to generate aberration correction hologram data for correcting aberrations due to the shape with the refractive index difference on the basis of the information acquired by the shape acquisition unit, and a spatial light modulator on which a hologram based on the aberration correction hologram data is presented and which modulates the light output from the light source.
Abstract:
An imaging device includes a camera 31, a light source 32, a polarizer 35 arranged between the camera 31 plus the light source 32 and an object 11, and a spatial light modulator 40A arranged between the polarizer 35 and the object 11 to control a revolution angle of an emitting light polarization plane relative to an incident light polarization plane.
Abstract:
A super-resolution observation device includes an illumination optical system that focus a first illuminating light at optical frequency ω1 and a second illuminating light at optical frequency ω2 on a region of an observation object plane; a modulation unit that modulates a property of the first illuminating light heading toward the region at a modulation frequency fm; and an extraction unit that extracts a component at the optical frequency ω1 or ω2 from a light generated in the region according to the first illuminating light and the second illuminating light, the component of which the property changes at a frequency higher than the modulation frequency fm.
Abstract:
Embodiments of the invention provide an imaging system and method using adaptive optics and optimization algorithms for imaging through highly scattering media in oil reservoir applications and lab-based petroleum research. Two-/multi-photon fluorescence microscopy is used in conjunction with adaptive optics for enhanced imaging and detection capabilities in scattering reservoir media. Advanced fluorescence techniques are used to allow for super-penetration imaging to compensate for aberrations both in and out of the field of interest, extending the depth at which pore geometry can be imaged within a rock matrix beyond the current capability of confocal microscopy. The placement of a Deformable Mirror or Spatial Light Modulator for this application, in which scattering and index mismatch are dominant aberrations, is in an optical plane that is conjugate to the pupil plane of the objective lens in the imaging system.
Abstract:
A method for measuring the activity of one or more excitable cells, such as neurons, in a target tissue is provided. The present method may include measuring the activity of individual, selected excitable cells by projecting one or more three dimensional (3D) multi-focal laser light patterns into a target tissue containing excitable cells adapted to emit cellular electrical activity—sensitive fluorescence, to generate a multiplexed 2D diffraction pattern of fluorescence emitted by the neurons, and resolving the multiplexed 2D diffraction pattern. Also provided herein is a system configured to perform the present method, the system including a microscope configured to project one or more 3D multi-focal laser light patterns into a target tissue using a spatial light modulator and a mirror galvanometer, and a microlens array and an image detector to record individual and multiplexed 2D diffraction patterns of light emitted from the target tissue.