Abstract:
A ferrite core comprising a sintered oxide containing at least 48.6 to 53.9 mol % of Fe on Fe2O3 basis, 12.3 to 35.2 mol % of Ni on NiO basis and 16.4 to 37.0 mol % of Zn on ZnO basis as metal elements, and contains a crystal phase comprising two or more kinds of solid solutions selected from NiFe2O4, ZnFe2O4 and FeFe2O4, wherein full width at half maximum of a diffraction peak, of crystal phase of which diffraction angle 2θ is in a range from 34.6 to 36.4° as measured by X-ray diffraction analysis using Cu—Kα beam, is 0.4° or less.
Abstract translation:一种铁氧体磁芯,其包含在Fe 2 O 3基上含有至少48.6〜53.9摩尔%Fe的烧结氧化物,NiO为12.3〜35.2摩尔%,Ni为16.4重量% 至基于ZnO的基于Zn的37.0mol%的Zn作为金属元素,并且含有包含两种或更多种选自NiFe 2 O 4 S,ZnFe 2 sub> 4 sub>和FeFe 2 O 4,其中衍射峰的半峰全宽,晶相的 通过使用Cu-Kalpha光束的X射线衍射分析测得的衍射角2θ在34.6〜36.4°的范围内为0.4°以下。
Abstract:
The present invention provides a process for simply and easily producing fine metal particles or fine metal oxide particles in the form of a dry powder which can be used as extremely fine particles in a good dispersion state without causing coagulation for a long time even if not stored in a dispersion solvent. Fine metal particles or fine metal oxide particles in the form of a dry powder are prepared using a dispersion in which fine metal particles or fine oxide metal particles having a surface oxidation film are dispersed in an organic solvent in a stable state, while once covering the particle surface with covering agent molecules containing, at a terminal, a functional group having an oxygen atom, a nitrogen atom, or a sulfur atom as a group capable of forming a coordinative bond with metal, and by removing the dispersion solvent, washing and removing excess covering agent molecules with a polar solvent without damaging the covering agent molecule layer covering the fine particle surface, finally evaporating the polar solvent used for washing and drying.
Abstract:
Composite which contains reinforcing fibers comprising carbon and whose matrix comprises silicon carbide, silicon and copper, with the mass fraction of copper in the composite being up to 55%, processes for producing it, in particular by liquid infiltration of C/C intermediate bodies with melts comprising Si and/or Cu and Si, and also its use as friction lining in a friction pairing with ceramic brake discs or clutch discs comprising C/SiC.
Abstract:
A substrate for forming a thin film composed mainly of gallium nitride, indium nitride or aluminum nitride, the substrate consisting of a sintered compact composed mainly of a ceramic material; and a thin-film substrate furnished with the thin film. The use of the sintered compact composed mainly of a ceramic material, especially translucent sintered compact, as the substrate enables formation thereon of a highly crystalline single-crystal thin film composed mainly of at least one member selected from among gallium nitride, indium nitride and aluminum nitride. Thus, there is provided a thin-film substrate furnished with a highly crystalline single-crystal thin film. Further, the use of the sintered compact composed mainly of a ceramic material enables providing of a light emitting element excelling in luminous efficiency.
Abstract:
The invention relates to a heat sink comprising a diamond-containing composite material. In addition to a diamond content of 40-90% by volume, the composite material further comprises from 0.005 to 12% by volume of a silicon-carbon compound, from 7 to 49% by volume of an Ag-, Au- or Al-rich phase and less than 5% by volume of a further phase, with the volume ratio of the Ag-, Au or Al-rich phase to silicon carbide being greater than 4 and at least 60% of the diamond surface being covered by the silicon-carbon compound. Preferred production processes include atmospheric pressure and pressure-aided infiltration techniques. The component is suitable, in particular, as heat sink for semiconductor components.
Abstract:
A method of joining metal and ceramic parts, wherein an alumina forming metal part and a ceramic part are provided. A braze material in placed between the alumina forming metal part and the ceramic part, and the combination is then heated in an oxidizing atmosphere, preferably in air at a temperature of between 500° C. and 1300° C. The alumina forming metal parts are selected from the group consisting of high temperature stainless steels, such as Durafoil (alpha-4), Fecralloy, Alumina-coated 430 stainless steel and Crofer-22APU, and high temperature superalloys such as Haynes 214, Nicrofer 6025, and Ducraloy. The braze material is selected as a metal oxide-noble metal mixture, preferably Ag—CuO, Ag—V2O5, and Pt—Nb2O5, and more preferably between 30.65 to 100 mole % Ag in CuO.
Abstract translation:一种连接金属和陶瓷部件的方法,其中提供了氧化铝形成金属部件和陶瓷部件。 在氧化铝形成金属部件和陶瓷部件之间放置钎焊材料,然后将该组合物在氧化气氛中,优选在空气中在500℃至1300℃的温度下加热。形成氧化铝的金属部件为 选自Durafoil(α-4),Fecralloy,涂有氧化铝的430不锈钢和Crofer-22APU等高温不锈钢以及Haynes 214,Nicrofer 6025和Ducraloy等高温超合金。 选择钎焊材料作为金属氧化物 - 贵金属混合物,优选Ag-CuO,Ag-V 2 O 5和Pt-Nb 2 O 5, 更优选CuO中的30.65-100摩尔%Ag。
Abstract:
The present invention relates to a method for manufacturing a diamond composite from diamond particles, comprising the steps of forming a work piece, heating the work piece and controlling the heating temperature and heating time so that a certain desired amount of graphite is created by graphitization of diamond particles, thereby creating an intermediate body, and infiltrating silicon or silicon alloy into the intermediate body. The invention also relates to a diamond composite produced by this method.
Abstract:
A process for fabricating a carbon composite structure that is lightweight, structurally sound, and characterized by high heat capacity. A carbon structure is devised with cavities therein receiving a phase change medium. The phase change medium demonstrates both high energy absorption capacity and high thermal conductivity and is formed from a carbon fiber to establish a high porosity medium having a large volume fraction. The surface energy of the carbon fibers is enhanced in various ways as by deposition of a carbide former, a metallurgical coating or a precursor liquid or by electroplating or etching the surfaces of the carbon fibers. The enhanced surface energy allows for the retention of phase change material.
Abstract:
Improved silicon carbide composites made by an infiltration process feature a metal phase in addition to any residual silicon phase. Not only are properties such as mechanical toughness improved, but the infiltrant can be so engineered as to have much diminished amounts of expansion upon solidification, thereby enhancing net-shape-making capabilities. Further, multi-component infiltrant materials may have a lower liquidus temperature than pure silicon, thereby providing the practitioner greater control over the infiltration process. In particular, the infiltration may be conducted at the lower temperatures, where low-cost but effective bedding or barrier materials can terminate the infiltration process once the infiltrant has migrated through the permeable mass up to the boundary between the mass and the bedding material.
Abstract:
Fiber-reinforced ceramic composites which comprise at least two layers of a multidirectional woven fiber fabric as reinforcement, with at least 5% of the area of each layer of woven fiber fabric being permeated by matrix material, friction disks comprising these composites as core zone or support zone, a process for producing them and their use as brake disks or clutch disks.