-
公开(公告)号:US20240227235A9
公开(公告)日:2024-07-11
申请号:US18168798
申请日:2023-02-14
Applicant: SHANDONG UNIVERSITY , YANSHAN UNIVERSITY
Inventor: Chuanzhen HUANG , Yunpeng Feng , Hanlian Liu , Zhenyu Shi , Peng Yao , Dun Liu , Bin Zou , Hongtao Zhu , Zhen Wang , Jun Wang , Longhua Xu , Shuiquan Huang , Meina Qu , Zhengkai Xu , Minting Wang , Yabin Guan
IPC: B28B3/02 , C04B35/117 , C04B35/626 , C04B35/63 , C04B35/645
CPC classification number: B28B3/021 , C04B35/117 , C04B35/6261 , C04B35/6264 , C04B35/62655 , C04B35/6303 , C04B35/645 , C04B2235/3206 , C04B2235/3217 , C04B2235/3225 , C04B2235/3843 , C04B2235/3847 , C04B2235/404 , C04B2235/405 , C04B2235/604 , C04B2235/606 , C04B2235/75
Abstract: A method for preparing a shell-bionic ceramic tool and a shell-bionic ceramic tool, wherein the shell-bionic ceramic tool includes alternating stacks of ceramic powders with different components, pressing a ceramic green body using a cold briquetting method, carrying out pre-pressing once using a graphite indenter on a working surface thereof after each layer of the ceramic powder being loaded, and pressing a last layer using a graphite rod, and then pressing a whole ceramic green body with a certain pressure to promote a bonding of the layers of ceramic powder, which in turn gives a complex shape to an interface between the layers, increases a bonding area between the layers, and plays the role of hindering crack expansion, extending the crack expansion path, and improving the bonding strength of the interface; after then, hot-pressed sintering is used to densify the ceramic green body to obtain the shell-bionic ceramic tool.
-
公开(公告)号:US11673841B2
公开(公告)日:2023-06-13
申请号:US17892081
申请日:2022-08-21
Applicant: University of Jinan
Inventor: Qinggang Li , Jinkai Li , Zongming Liu , Zhenyu Zhang , Guopu Shi , Zhi Wang
IPC: C04B35/575 , C04B35/117 , C04B35/626 , C04B35/645
CPC classification number: C04B35/575 , C04B35/117 , C04B35/6261 , C04B35/645 , C04B2235/3217 , C04B2235/3418 , C04B2235/3826 , C04B2235/3843 , C04B2235/6562 , C04B2235/6567 , C04B2235/785 , C04B2235/786
Abstract: An alumina/titanium silicon carbide composite material is prepared by making titanium aluminum carbide (Ti3AlC2) in uniform contact with silicon monoxide (SiO), and carrying out vacuum sintering. The composite material is obtained through mutual diffusion of aluminum and silicon and has high compactness and stable performance. In the composite material, the alumina is generated by means of a reaction between the titanium aluminum carbide and the silicon monoxide, and can be uniformly wrapped around surfaces of titanium silicon carbide crystals to form a relatively compact oxide film, such that substance exchange between a matrix and the outside is hindered, and overall antioxidation of the composite material is improved. Toughness of the composite material is enhanced by means of the titanium silicon carbide. The prepared composite material has relatively high purity, relatively low sintering temperature, and relatively high bending strength. The process is simple and convenient for industrial production.
-
公开(公告)号:US20180237346A1
公开(公告)日:2018-08-23
申请号:US15754075
申请日:2016-08-25
Applicant: SANDVIK INTELLECTUAL PROPERTY AB
Inventor: Susanne NORGREN , Johan SUNDSTROM , Malin MARTENSSON , Anna EKMARKER
IPC: C04B35/52 , C04B35/628 , C04B35/63 , C04B35/645 , B01J3/06
CPC classification number: C04B35/52 , B01J3/06 , B01J3/065 , B01J2203/062 , B01J2203/0655 , C04B35/573 , C04B35/628 , C04B35/62823 , C04B35/6316 , C04B35/634 , C04B35/6455 , C04B2235/3826 , C04B2235/3834 , C04B2235/3843 , C04B2235/3891 , C04B2235/3895 , C04B2235/404 , C04B2235/427 , C04B2235/428 , C04B2235/48 , C04B2235/5427 , C04B2235/5436 , C04B2235/5472 , C04B2235/604 , C04B2235/608 , C04B2235/616 , C04B2235/652 , C04B2235/656 , C04B2235/6562 , C04B2235/77 , C04B2235/786 , C04B2235/80 , C04B2235/85 , C04B2235/95 , C04B2235/96 , C04B2235/9615
Abstract: A method of producing a component of a composite of diamond and a binder, wherein a Hot Isostatic gas Pressure process (HIP) is used, includes the step of enclosing a de-bound green body having compacted diamond particles in an infiltrant. The method includes the further steps of enclosing the de-bound green body and the infiltrant in a Zr-capsule that has Zirconium as a main constituent and sealing the Zr-capsule, and applying a predetermined pressure-temperature cycle on the unit formed by the de-bound green body, infiltrant and capsule in which the infiltrant infiltrates the de-bound green body and the de-bound green body is further densified in the sense that the volume thereof is decreased.
-
公开(公告)号:US10053755B2
公开(公告)日:2018-08-21
申请号:US14116870
申请日:2012-05-25
Applicant: Declan John Carolan , Neal Murphy , Alojz Ivankovic
Inventor: Declan John Carolan , Neal Murphy , Alojz Ivankovic
IPC: B24D3/02 , C09C1/68 , C09K3/14 , C22C26/00 , C04B35/52 , C04B35/5831 , B24D18/00 , C01B21/064
CPC classification number: C22C26/00 , B24D18/00 , C01B21/0648 , C04B35/52 , C04B35/5831 , C04B2235/3804 , C04B2235/3826 , C04B2235/3843 , C04B2235/3856 , C04B2235/386 , C04B2235/3865 , C04B2235/3886 , C04B2235/427 , C04B2235/5436 , C04B2235/5445 , C04B2235/6565 , C04B2235/80 , C04B2235/96 , C04B2235/9615 , C22C2026/003 , C22C2026/005 , C22C2026/006 , C22C2026/007
Abstract: A method for treating a super-hard structure, the method including heating the super-hard structure to a treatment temperature of at least 500 degrees centigrade and cooling the super-hard structure from the treatment temperature to a temperature of less than 200 degrees centigrade at a mean cooling rate of at least 1 degree centigrade per second and at most 100 degrees centigrade per second to provide a treated super-hard structure. A PCBN structure produced by the method may have flexural strength of at least 650 MPa.
-
公开(公告)号:US20180108556A1
公开(公告)日:2018-04-19
申请号:US15719708
申请日:2017-09-29
Applicant: NGK Insulators, LTD.
Inventor: Hiroshi TAKEBAYASHI
IPC: H01L21/683 , B32B37/10 , B32B15/04
CPC classification number: H01L21/6833 , B32B15/04 , B32B37/10 , B32B37/144 , B32B38/1866 , B32B2037/0092 , B32B2038/0076 , B32B2309/105 , B32B2457/14 , C04B35/565 , C04B35/645 , C04B37/006 , C04B2235/3826 , C04B2235/3839 , C04B2235/3843 , C04B2235/3891 , C04B2235/404 , C04B2235/428 , C04B2235/5436 , C04B2235/604 , C04B2235/80 , C04B2235/9607 , C04B2237/121 , C04B2237/126 , C04B2237/128 , C04B2237/343 , C04B2237/365 , C04B2237/704 , C04B2237/76
Abstract: A method for producing a member for a semiconductor manufacturing apparatus 10 includes (a) a step of providing an electrostatic chuck 20, a supporting substrate 30, and a metal bonding material 401, the electrostatic chuck being made of a ceramic and having a form of a flat plate, the supporting substrate including a composite material having a difference in linear thermal expansion coefficient at 40 to 570° C. from the ceramic of 0.2×10−6/K or less in absolute value, and (b) a step of interposing the metal bonding material 401 between a concave face 32 of the supporting substrate 30 and a face 23 of the electrostatic chuck 20 opposite to a wafer mounting face 22, and thermocompression bonding the supporting substrate 30 and the electrostatic chuck 20 at a predetermined temperature to deform the electrostatic chuck 20 to the shape of the concave face 32.
-
公开(公告)号:US09751808B2
公开(公告)日:2017-09-05
申请号:US15028517
申请日:2014-09-30
Applicant: United Technologies Corporation
Inventor: Imelda P. Smyth , Douglas M. Berczik
IPC: B28B11/24 , C04B35/571 , C04B35/80 , C04B35/65 , C04B35/76
CPC classification number: C04B35/571 , C04B35/5603 , C04B35/65 , C04B35/76 , C04B35/806 , C04B2235/3821 , C04B2235/3826 , C04B2235/3839 , C04B2235/3843 , C04B2235/3847 , C04B2235/3865 , C04B2235/3886 , C04B2235/40 , C04B2235/404 , C04B2235/405 , C04B2235/408 , C04B2235/483 , C04B2235/5244 , C04B2235/667
Abstract: Disclosed is a method for fabricating a ceramic material from a preceramic polymer material. The method includes providing a preceramic polymer material that has a preceramic polymer and an electromagnetic radiation-responsive component. The electromagnetic radiation-responsive component is selected from boron-containing compounds, cobalt, titanium, zirconium, hafnium, tantalum, tungsten, rhenium, nitrides of aluminum, nitrides of titanium, nitrides of zirconium, nitrides of hafnium, nitrides of tantalum, nitrides of tungsten, nitrides of rhenium, carbides of aluminum, carbides of titanium, carbides of zirconium, carbides of hafnium, carbides of tantalum, carbides of tungsten, carbides of rhenium and combinations thereof. An electromagnetic radiation is applied to the preceramic polymer material. The electromagnetic radiation interacts with the electromagnetic radiation-responsive component to generate heat that converts the preceramic polymer to a ceramic material.
-
公开(公告)号:US20170197886A1
公开(公告)日:2017-07-13
申请号:US15327214
申请日:2016-02-24
Inventor: Mayu Danda , Katsumi Okamura , Satoru Kukino
IPC: C04B35/5831 , B23C5/20 , C04B35/645 , C04B35/63 , C04B35/626 , B23B27/14 , C04B35/488
CPC classification number: C04B35/5831 , B23B27/148 , B23B2224/04 , B23B2226/125 , B23B2228/44 , B23C5/20 , B23C2224/04 , B23C2226/125 , B23C2228/49 , C01F7/34 , C01F7/36 , C01G25/02 , C01P2002/50 , C01P2002/54 , C01P2004/64 , C04B35/4885 , C04B35/6261 , C04B35/6264 , C04B35/6303 , C04B35/645 , C04B2235/3206 , C04B2235/3217 , C04B2235/3225 , C04B2235/3229 , C04B2235/3244 , C04B2235/3839 , C04B2235/3843 , C04B2235/3852 , C04B2235/386 , C04B2235/3865 , C04B2235/3873 , C04B2235/3886 , C04B2235/402 , C04B2235/5436 , C04B2235/5445 , C04B2235/5454 , C04B2235/656 , C04B2235/6567
Abstract: A sintered compact has a first material, a second material, and a third material. The first material is cubic boron nitride. The second material is a compound including zirconium. The third material is an aluminum oxide and the aluminum oxide includes a fine-particle aluminum oxide. The sintered compact has a first region in which not less than 5 volume % and not more than 50 volume % of the fine-particle aluminum oxide is dispersed in the second material. On arbitrary straight lines in the first region, an average value of continuous distances occupied by the fine-particle aluminum oxide is not more than 0.08 μm and a standard deviation of the continuous distances occupied by the fine-particle aluminum oxide is not more than 0.1 μm.
-
公开(公告)号:US09695088B2
公开(公告)日:2017-07-04
申请号:US13216007
申请日:2011-08-23
Applicant: Yuechu Ma , Douglas K. Doza , Timothy M. Green , Dana G. Goski
Inventor: Yuechu Ma , Douglas K. Doza , Timothy M. Green , Dana G. Goski
IPC: B05D7/00 , C08K3/04 , C08K3/34 , C08L95/00 , B05D5/00 , C04B35/66 , C04B35/52 , C04B35/532 , F27D1/00 , F27D1/10 , F27D1/16
CPC classification number: C04B35/66 , C04B35/522 , C04B35/532 , C04B2235/3217 , C04B2235/3222 , C04B2235/3232 , C04B2235/3241 , C04B2235/3244 , C04B2235/3418 , C04B2235/3821 , C04B2235/3843 , C04B2235/3869 , C04B2235/3873 , C04B2235/402 , C04B2235/424 , C04B2235/425 , C04B2235/428 , C04B2235/48 , F27D1/0006 , F27D1/10 , F27D1/1636
Abstract: A monolithic refractory castable material comprises from about 25 to about 80 weight percent of graphite, from about 1 to about 15 weight percent of a water dispersible, curable phenolic novolac resin, and from about 70 to about 15 weight percent of one or more refractory aggregates, based on the weight of the monolithic refractory castable material. The monolithic refractory castable material is water dispersible and may be delivered to a structure surface by casting, pumping, shotcreting or gunning processes. In one embodiment, the monolithic refractory castable material may be employed to install or replace a blast furnace lining.
-
公开(公告)号:US09533918B2
公开(公告)日:2017-01-03
申请号:US13250084
申请日:2011-09-30
Applicant: Michael A. Kmetz , Timothy P. Coons , Justin W. Reutenauer
Inventor: Michael A. Kmetz , Timothy P. Coons , Justin W. Reutenauer
IPC: C04B35/65 , C04B35/589 , C04B35/591 , C04B35/80 , C04B35/628
CPC classification number: C04B35/589 , C04B35/591 , C04B35/62863 , C04B35/62868 , C04B35/62871 , C04B35/62894 , C04B35/62897 , C04B35/806 , C04B2235/3843 , C04B2235/3865 , C04B2235/3886 , C04B2235/3891 , C04B2235/40 , C04B2235/402 , C04B2235/404 , C04B2235/522 , C04B2235/524 , C04B2235/5244 , C04B2235/5436
Abstract: A method for a fabricating a ceramic material includes providing a mixture of a reactive metallic filler material with a preceramic polysilazane material. The preceramic polysilazane material is then polymerized to form a green body. The green body is then thermally treated in an environment that is substantially free of oxygen to convert the polymerized preceramic polysilazane material into a ceramic material that includes at least one nitride phase that is a reaction product of the reactive metallic filler material and a preceramic polysilazane material.
Abstract translation: 制造陶瓷材料的方法包括提供反应性金属填料与前陶瓷聚硅氮烷材料的混合物。 然后将预陶瓷聚硅氮烷材料聚合以形成生坯。 然后将生坯在基本上不含氧的环境中进行热处理,以将聚合的陶瓷聚硅氮烷材料转化成陶瓷材料,该陶瓷材料包括至少一个作为反应性金属填料和陶瓷前硅烷氮化物材料的反应产物的氮化物相 。
-
公开(公告)号:US09403723B2
公开(公告)日:2016-08-02
申请号:US14245111
申请日:2014-04-04
Applicant: Teddy M. Keller , Andrew Saab , Matthew Laskoski , Manoj K. Kolel-Veetil
Inventor: Teddy M. Keller , Andrew Saab , Matthew Laskoski , Manoj K. Kolel-Veetil
IPC: B22F9/16 , C04B35/58 , C04B35/56 , C04B35/83 , C04B35/66 , C04B35/626 , C04B35/52 , C04B35/524 , C04B35/76 , C04B35/80 , C01B21/06 , C01B21/076 , C01B31/30 , B82Y30/00 , C04B35/657
CPC classification number: C04B35/58014 , B82Y30/00 , C01B21/0617 , C01B21/062 , C01B21/0761 , C01B21/0765 , C01B32/914 , C01B32/921 , C01P2002/72 , C01P2004/03 , C01P2004/64 , C01P2004/80 , C04B35/52 , C04B35/522 , C04B35/524 , C04B35/5607 , C04B35/5611 , C04B35/5622 , C04B35/5626 , C04B35/58007 , C04B35/58028 , C04B35/58035 , C04B35/62645 , C04B35/6265 , C04B35/62675 , C04B35/6269 , C04B35/62695 , C04B35/657 , C04B35/66 , C04B35/76 , C04B35/80 , C04B35/806 , C04B35/83 , C04B2235/38 , C04B2235/3839 , C04B2235/3843 , C04B2235/3847 , C04B2235/3886 , C04B2235/404 , C04B2235/422 , C04B2235/425 , C04B2235/44 , C04B2235/46 , C04B2235/48 , C04B2235/524 , C04B2235/5248 , C04B2235/526 , C04B2235/5288 , C04B2235/5454 , C04B2235/6562 , C04B2235/658 , C04B2235/6581 , C04B2235/6586 , C04B2235/663 , C04B2235/80
Abstract: A composition having nanoparticles of a refractory-metal carbide or refractory-metal nitride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles with an organic compound having a char yield of at least 60% by weight to form a precursor mixture.
Abstract translation: 具有难熔金属碳化物或难熔金属氮化物和碳质基体的纳米颗粒的组合物。 组合物不是粉末形式。 包含金属组分和有机组分的组合物。 金属成分是能够分解成难熔金属纳米粒子的难熔金属或难熔金属化合物的纳米颗粒或颗粒。 有机成分是焦炭产率为至少60重量%的有机化合物或由有机化合物制成的热固性材料。 将能够使难熔金属纳米颗粒反应或分解的难熔金属或难熔金属化合物的颗粒与焦炭产率至少为60重量%的有机化合物组合以形成前体混合物的方法。