Abstract:
A method for preparing an aluminum carbon composite by using a foam aluminum includes the following steps. Electromagnetic stirring and drying are performed on the foam aluminum and a carbon material to obtain a foam aluminum preform; an aluminum block is melted into aluminum liquid, the aluminum liquid is adjusted to qualified aluminum liquid, the qualified aluminum liquid is cooled to a temperature of 620˜650° C. and keeping the temperature to make the qualified liquid aluminum become a semi-solid state, then the foam aluminum preform is pressed into the qualified liquid aluminum and performing electromagnetic stirring. A mold is heated to a certain temperature and extrusion molding is performed to obtain a carbon reinforced aluminum matrix composite material. The method overcomes a problem that the carbon material and the aluminum matrix have poor wettability and are not easy to be added into the aluminum matrix.
Abstract:
The present invention provides a preparation method of a metal matrix composite. The method comprises the following steps of: 1) pulverizing a solid carbon material to a micrometer size; 2) plastic deforming a metal matrix powder and dispersing the pulverized nanometer-sized carbon material into the metal matrix powder during the plastic deformation; 3) integrating the metal/carbon nano-material composite powder obtained in step 2) by using a hot forming process; and 4) heat treating the integrated bulk material at a predetermined temperature to form a composite having a metal-carbon nanophase, a metal-carbon nanoband formed by growth of the metal-carbon nanophase, or a metal-carbon nano-network structure formed by self-coupling of the metal-carbon nanoband.
Abstract:
A method of producing a carbon-based material includes steps (a), (b) and (c). In the step (a), an elastomer and at least a first carbon material is mixed and the first carbon material is dispersed by applying a shear force to obtain a composite elastomer. In the step (b), the composite elastomer is heat-treated to vaporize the elastomer, and a second carbon material is obtained. In the step (c) the second carbon material is heat-treated together with a substance including an element Y to vaporize the substance including the element Y, a melting point of the element Y being low.
Abstract:
Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles dispersed throughout a matrix material. In some embodiments, the particles are at least substantially fully carburized monotungsten carbide and ditungsten carbide eutectic particles. In further embodiments, the particles are generally spherical or at least substantially spherical. Methods of forming such particles include exposing a plurality of monotungsten carbide and ditungsten carbide eutectic particles to a gas containing carbon. Methods of manufacturing such tools include providing a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles or at least substantially completely carburized monotungsten carbide and ditungsten carbide eutectic particles within a matrix material.
Abstract:
Improved silicon carbide composites made by an infiltration process feature a metal phase in addition to any residual silicon phase. Not only are properties such as mechanical toughness improved, but the infiltrant can be so engineered as to have much diminished amounts of expansion upon solidification, thereby enhancing net-shape-making capabilities. Further, multi-component infiltrant materials may have a lower liquidus temperature than pure silicon, thereby providing the practitioner greater control over the infiltration process. In particular, the infiltration may be conducted at the lower temperatures, where low-cost but effective bedding or barrier materials can terminate the infiltration process once the infiltrant has migrated through the permeable mass up to the boundary between the mass and the bedding material.
Abstract:
In a method of making alloy of tungsten and lanthana, lanthanum hydroxide is blended with tungsten metal powder, the mixture is pressed to form a pressed ingot, optionally presintered, and sintered to form the alloy. The use of lanthanum hydroxide as the source of the lanthana dopant allows the pressed or presintered ingots to be stored in air prior to sintering for prolonged periods without becoming degraded from exposure to atmospheric moisture.
Abstract:
Disclosed is a preparation method of a magnesium matrix composite reinforced with SiC particles, belonging to the technical field of metallurgical materials, including the following steps: (1) carrying out oxidation pretreatment on SiC particles; (2) laying a piece of magnesium alloy on a bottom, laying a layer of oxidized SiC particles, then repeating a laying operation of a layer of magnesium alloy and a layer of SiC particles until the magnesium alloy and the SiC particles are completely laid, introducing inert gases, heating and melting, then performing cinder scrapping; (3) cooling to a semisolid temperature of the magnesium alloys for semisolid mechanical stirring, heating, and mechanically stirring again; (4) cooling again to the semisolid temperature of the magnesium alloys, then casting into a blank; and (5) heating the blank to the semisolid temperature of the magnesium alloys and extruding to obtain the magnesium matrix composite reinforced with SiC particles.
Abstract:
A method of producing a composite material which includes a carbon-based material and a particulate or fibrous metal material Z. The method includes steps (a) to (c). In the step (a), at least a first carbon material and the metal material Z mixed into an elastomer, and dispersing the first carbon material and the metal material Z by applying a shear force to obtain a composite elastomer, the metal material Z having a melting point lower than a melting point of the first carbon material. In the step (b), the composite elastomer is heat-treated to vaporize the elastomer to obtain an intermediate composite material including a second carbon material and the metal material Z. In the step (c), the intermediate composite material is heat-treated together with a substance including an element Y having a melting point lower than the melting point of the metal material Z to vaporize the substance including the element Y.
Abstract:
A composite metal material includes a carbon-based material in a matrix of a metal-based material. The carbon-based material has a first bonding structure in which an element X bonds to a carbon atom on a surface of a carbon material. The matrix includes an amorphous peripheral phase containing aluminum, nitrogen, and oxygearound the carbon-based material. The element X includes at least one element selected from boron, nitrogen, oxygen, and phosphorus.
Abstract:
A method for manufacturing a composite metal alloy from a carbon nanomaterial and a metal material is disclosed. The carbon nanomaterial and the metal material are mixed, and a mixture is obtained. Afterwards, the mixture is dissolved. In the dissolving step, the carbon nanomaterial moves through the melt while adhering to the metal material.