Abstract:
The present invention relates to a short carbon fiber-reinforced composite material, including a base material part and at least one sliding part contacting the base material part, in which each of the base material part and the sliding part has a plurality of short carbon fiber bundles in which at least a part thereof has been converted into SiC and a SiC matrix present among the plurality of short carbon fiber bundles, as constituent components, and the short carbon fiber bundles of the sliding part have a SiC conversion higher than that of the short carbon fiber bundles of the base material part.
Abstract:
Provided are: a porous electrode substrate which has excellent handling properties and surface smoothness and satisfactory gas permeability and electrical conductivity, and enables the reduction of damage to a polymer electrolyte membrane when integrated into a fuel cell; and a process for producing the porous electrode substrate. Specifically provided are: a porous electrode substrate comprising a three-dimensional structure (Y-1) produced by bonding short carbon fibers through carbon and a three-dimensional structure (Y-2) produced by bonding short carbon fibers through carbon, wherein the three-dimensional structures (Y-1) and (Y-2) are layer stacked on and integrated with each other, the short carbon fibers form a three-dimensional entangled structure in the structure (Y-1), and the short carbon fibers do not form a three-dimensional entangled structure in the structure (Y-2); a process for producing the electrode base material; a precursor sheet for producing the electrode base material; a membrane-electrode assembly which involves the electrode base material; and a polymer electrolyte fuel cell.
Abstract:
The disclosure relates generally to a method for reducing the thermal expansion/shrinkage behavior between fiber reinforced plies and monolithic matrix plies, and reducing the macroscopic defects that occur during process of making a ceramic matrix composite article.
Abstract:
A mat includes a first main face and a second main face opposite to the first main face. At least two layers include a first layer occupying a first area from the first main face along a thickness direction of the mat. The first layer includes a first long fibrous substance which includes an inorganic fibrous substance. A second layer is adjacent to the first layer. The second layer includes a short fibrous substance which includes an inorganic fibrous substance and which has an average fiber length shorter than an average fiber length of the first long fibrous substance. An intertwined portion extends from the first main face to the second main face. The intertwined portion includes the first long fibrous substance and the short fibrous substance being more closely intertwined with each other than the inorganic fibrous substances in a portion except the intertwined portion.
Abstract:
A method is provided for producing a highly porous substrate. More particularly, the present invention enables fibers, such as organic, inorganic, glass, ceramic, polymer, or metal fibers, to be combined with binders and additives, and extruded, to form a porous substrate. Depending on the selection of the constituents used to form an extrudable mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables process advantages at other porosities, as well. The extrudable mixture may use a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Additives can be selected that form inorganic bonds between overlapping fibers in the extruded substrate that provide enhanced strength and performance of the porous substrate in a variety of applications, such as, for example, filtration and as a host for catalytic processes, such as catalytic converters.
Abstract:
A highly porous substrate is provided using an extrusion system. More particularly, the present invention enables the production of a highly porous substrate. Depending on the particular mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables advantages at other porosities, as well. The extrusion system enables the use of a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Fibers, which have an aspect ratio greater than 1, are selected according to substrate requirements, and are typically mixed with binders, pore-formers, extrusion aids, and fluid to form a homogeneous extrudable mass. The homogeneous mass is extruded into a green substrate. The more volatile material is preferentially removed from the green substrate, which allows the fibers to form interconnected networks. As the curing process continues, fiber to fiber bonds are formed to produce a structure having a substantially open pore network. The resulting porous substrate is useful in many applications, for example, as a substrate for a filter or catalyst host, or catalytic converter.
Abstract:
A fiber-reinforced composite body containing a first zone made of a ceramic matrix, which predominantly contains silicon carbide and, optionally, silicon and/or carbon and/or compounds thereof, and containing a second zone, which is located on a surface of the ceramic matrix zone and formed form a fiber-reinforced C/SiC ceramic. The fiber length decreases from the exterior of the fiber-reinforced ceramic zone up to the first zone and, optionally, up to one or more other zones that are arranged on the second zone. A method for producing the composite body is characterized by involving a joint infiltration at least of the first zone and of the second zone with liquid silicon and by the carrying out of a siliconization. A composite body of this type can be used, in particular, as armoring in the civil or military sectors.
Abstract:
A fiber-reinforced composite body containing a first zone made of a ceramic matrix, which predominantly contains silicon carbide and, optionally, silicon and/or carbon and/or compounds thereof, and containing a second zone, which is located on a surface of the ceramic matrix zone and formed form a fiber-reinforced C/SiC ceramic. The fiber length decreases from the exterior of the fiber-reinforced ceramic zone up to the first zone and, optionally, up to one or more other zones that are arranged on the second zone. A method for producing the composite body is characterized by involving a joint infiltration at least of the first zone and of the second zone with liquid silicon and by the carrying out of a siliconization. A composite body of this type can be used, in particular, as armoring in the civil or military sectors.
Abstract:
Friction members are composed of a ceramic composite material. The friction members can be used for motor vehicles as a clutch disk for friction clutches, for transmitting motive power, or as a brake disk. A friction zone of the friction member is composed of ceramic, in particular of Si and SiC. A core zone of the friction member is made from fiber-reinforced C/SiC, in particular of long fiber woven fabric-reinforced and short fiber-reinforced C/SiC.
Abstract:
The invention relates to a fiber-reinforced ceramic body and a method for producing same. The ceramic body consists of a core and a boundary layer (93, 94) which is joined to the core and has at least one outer surface (96, 97) which can preferably be subjected to tribological stress. The core consists of one or more layers (92) of which at least one is reinforced with long fibers. The boundary layer (93, 94) is reinforced with short fibers. The fibers are preferably reaction-bonded in a matrix by melt infiltration and are made of high-temperature resistant fibers with covalent bonds on the basis of silicon, carbon, boron or nitrogen.